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ABSTRACT 

Military intelligent ground vehicle systems (MIGVS) have a wide variation in 

computationally controlled behavior logic that involves the interaction of both cyber and 

physical components as well as more typical systems engineering modeling needs and 

constraints. Current system concept design methods do not sufficiently address either the 

variation in cyber behavior linked to mission effectiveness or the integrated dependencies 

and interaction between the cyber and physical components. In this work, model-based 

concepts are developed to capture the required behavior logic as solution and assembly 

independent state-based agents and objects. These logical objects can be realized by 

alternative implementations and assembly aggregations, to include “human assemblies.” 

The approach contributes a more thorough and robust model of the subject problem 

domain. These concepts include an agent and component object system data metamodel, 

supporting structural system classes, and state-based behavior concepts. The concepts are 

applied to a case study project to produce a solution-independent system concept design. 
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EXECUTIVE SUMMARY 

Concept design is a critical stage of systems engineering. A key objective of 

concept design is to model the system behavior independent of any particular physical 

solution, i.e., distinguish what a system needs to do from its method of doing. This allows 

alternative physical solutions to be assessed against how well each meets the intended 

behavior, usually within a trade space framework. This solution independent behavior 

modeling is referred to here as initial or logical concept design. The final concept design 

is the integration of the logical concept design with the selected physical concept and is 

used to support or govern detailed design and product development. 

Each type of system, sub-type with specialized features, can have both common 

and unique behavior logic relative to each other. System types include weapon, 

command and control, business, enterprise, intelligent, information, autonomous, etc. 

Descriptive modeling techniques for logical concept design have emerged through 

practice and tend to support or favor certain system types over others. For example, 

functional-based design using Functional Flow Block Diagrams (FFBDs) emerged 

in support of mostly analog control of mechanical components in defense 

related applications, Business Process Modeling Notation (BPMN) in support of 

information management for business information systems, etc. FFBDs were 

augmented with data modeling techniques, such as data flow diagrams, as mechanical 

elements increasingly came under digital or computational control. 

Cyber-physical systems (CPS) has recently emerged as a system type and can be 

defined as a system with computational control of physical processes (Lee and Seshia 

2017), and are focused on the interactions or “the intersection of the cyber and the 

physical.” Weapon systems have been evolving toward CPS for some time. As a mobile 

CPS (MCPS) they present an additional challenge or feature of computational control of 

physical processes that interact with a dynamic external environment or context. MCPS 

can be further typed as a military intelligent ground vehicle system (MIGVS) with 

specific additional features: a relatively complex context, synchronized execution within 

a command and control hierarchy, and goal directed context aware intelligence. These 



 xxvi 

additional features result in multiple forms of behavior that must be accounted for in the 

logical concept design. 

The problem is current modeling practice for logical concept design lacks the 

necessary techniques to model all forms of MCPS and MIGVS behavior, such as cyber-

physical, operational information management, and goal-directed intelligent. Without 

sufficient and relatively equal capture of all forms of behavior, the final concept design is 

likely to be sub-optimized along one or more of them. This research contributes an 

architecture modeling approach that integrates all forms of behavior into a single system 

descriptive model that is solution independent yet directly supports physical component 

selection and alternative system assemblies. The “component” selection and assembly 

alternatives enabled include the realization of intelligent behavior by human operator(s) 

in lieu of or in conjunction with machine computation, control and sensing. 

The modeling approach is based on an overarching architecture concept data 

metamodel (DM2) as shown in Figure 1. This concept DM2 provides the overarching 

focus and framework for the supporting foundational terms and concepts. A MIGVS has 

a computational control logical hierarchy built on a base CPS layer, the latter is a 

required enabler for system intelligence. The logical hierarchy, like social hierarchies, are 

identified not by spatial proximity but by interaction (Simon 1962), in this case logical 

interaction. These interactions react and drive behavior in the form of world state change, 

both the system and the context. Key foundational concepts are: 

(1) Performer and Context Objects—as indicated, the world from the system 
perspective is composed of these objects. They have attributes that 
determine their state and are abstractions of some underlying physical 
reality. The system performer objects react to events and attempt to 
create effects in the context. 

(2) Goal-Based Trajectories are a desired or commanded path through a 
given world state space. Missions can be organized into a set of tasks 
which in turn can be organized into an ordered set of these desired 
trajectories. Mission orders or plans can be structured and stored as a set 
of successive world states with specific state and time goal measures. 

(3) Agent Logical Object (ALO) is a system performer object based on a 
granular intelligent or human operator role. Each ALO stores an 
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assigned mission of goal-based trajectories and interacts with other 
ALOs via command and percepts. ALOs initiate behavior based on their 
world belief state relative to their goal state. The ALOs together 
comprise an intelligent logical control hierarchy above the base CPS 
layer. 

(4) Horizontal Interactions—Interactions in a computational hierarchy can 
be distinguished between horizontal based on like data use at equivalent 
hierarchical levels, and vertical based on transforming the data (Shames 
and Sarrel. 2015) for use between hierarchical levels. The primary focus 
is horizontal interactions between hierarchically arranged ALOs. This 
hierarchy sub-divides the application level of computational hierarchy. 

 
Figure 1. MCPS Concept Data Metamodel 

The foundational concepts are modeled using the System Modeling Language 

(SysML). The system modeled concepts were used to support the generation of a case 

study system model also in SysML. The case study was based on a design reference 

mission of convoy following and design reference system of a Palletized Loading System 

(PLS). The system model consists of a set of performer objects based on an abstracted 

subset of the PLS physical hardware capabilities as well as a subset of two-person crew 

capabilities. 
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The system model was examined against the research questions. The system 

model generally is technologically independent, including a set of ALOs and sensors that 

could be realized by human or machine. All required forms of behavior are captured and 

sufficiently described. Operational and system behavior are integrated. Most of what 

could classically be described as operational behavior is incorporated into ALO behavior, 

mission assigned desired trajectories that they operate upon, and the interactions of 

ALOs. Most of what could classically be described as system behavior is within the CPS 

base layer. The system model is structured into a set of performer objects which enable 

direct link to component solutions, but have a level of granularity that would allow those 

component solutions to be aggregated into a variety of assembly approaches. 

The MCPS concept DM2 and the supporting foundational concepts provide the 

necessary perspective and supporting framework to support generation of a system model 

that captures all the necessary forms of behavior. It also does so in a way that could 

facilitate physical component selection and trade space analysis. The ALO concept 

arranged in a hierarchy provides sufficient fidelity in terms of interactions and goal state 

yet retains it physical solution independence. A discovered benefit of this approach is the 

ability to conceptualize three types of knowledge or data (Evans et al. 2002) parametric, 

symbolic, and complex data structures such as arrays, lists, maps, images, etc. This data 

conceptualization would be an important part of the overall MIGVS conceptualization. 
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I. INTRODUCTION 

This research contributes to the logical concept design phase of systems 

engineering by integrating multiple forms of logical behavior into a single descriptive 

system model. The forms of logical behavior include operational behavior (a kind of 

business behavior), intelligent behavior that is goal-directed and context-aware, and the 

control part of cyber-physical behavior. The system model is solution independent, 

makes no assumptions about any human operators, and provides a holistic capture of the 

logical problem domain in a way that can directly support technology component 

allocation and system trade space analysis. 

The system model is based on an underlying concept data metamodel (DM2) with 

foundational modeling concepts that support explicit modeling of the logic in terms of 

system objects, state behavior and interactions. Both the goals and the context associated 

with intelligent behavior can be captured in terms of objects and state. The approach of 

modeling system objects, their state, and their interactions, can be distinguished from a 

more typical systems engineering approach based on task or functional decomposition 

and interaction that is then mapped into some higher level system physical solution. The 

concepts are defined for the domain of mobile cyber-physical system (MCPS) in general 

and are applied to a more specific sub-domain, military intelligent ground vehicle system 

(MIGVS) in a case study. 

A. BACKGROUND AND MOTIVATION 

Cyber-physical systems (CPS) are defined by the National Science Foundation 

(NSF) as “smart networked systems with embedded sensors, processors, and actuators 

that are designed to sense and interact with the physical world” as well as human users 

(National Science Foundation [NSF] 2015). In CPS, the behavior emerging from the 

interaction between the “cyber” and “physical” elements of the system is critical. 

Physical elements are machines that interact directly with the physical world, and cyber 

elements are the computation, control and networks of the system. CPS can be further 

distinguished as having multiple types or models of computation. These in turn exhibit 
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what can be described as different types of associated behavior logic, to be defined 

here as cyber behavior or cyber controlled capability. The CPS behavior rests upon 

and/or is integrated with the physical behavior or physically driven capability. The cyber 

driven and physical driven capability are together realized by a set of technologies 

(i.e., computers, networks, software and machines). For clarity, the term component will 

be used when discussing the physical realization of technology for either cyber or 

physical capability. 

Figure 1 shows the technology challenges that apply to defense systems (National 

Science Foundation [NSF] 2015). Weapon systems have a set of computational types, 

a set of machines that interact with the physical world, and an added set of 

physical constraints due to their mobility and other factors. This research focuses on 

MIGVS, a military ground system with autonomy levels, machine automation, and/or 

data automation significant enough to improve the mission effectiveness to crew size 

ratio relative to a comparable, non-intelligent system. This makes a reduced crew solution 

feasible or conversely can improve mission effectiveness of a vehicle with the same 

size crew. 

 

Figure 1.  NSF Cyber-Physical System Technology Challenges. Source: NSF (2015). 
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A MCPS is likely to include four types of behavior logic (Douglass. 2004. 140–

144, leveraged for first three definitions): 

1. Simple functional behavior that transforms an input into an output without 

the use of memory or knowledge of previous input. Examples include direct flows of 

combinatory logic and mathematical functions, including control system transfer 

functions. 

2. State-based discrete-event behavior that transforms discrete input in 

combination with previous input captured as state information to a discrete output. This is 

the behavior logic most closely associated with data or information processing that 

transforms information from one form to another, often in in response to a user input. 

3. Continuous behavior that transforms continuous time input to a 

continuous time output where any previous input dependencies or state are also 

continuous. Examples include physical processes and “algorithmic objects” that 

transform a “stream of data” (Douglass 2004, 143–144). 

4. Intelligent behavior exhibited by an agent or entity that is goal-directed 

(Russell and Norvig 2003. 44–50) and that can act on knowledge and perhaps 

understanding (Ackoff 1989). An intelligent agent, man or machine, is context-aware, 

meaning it can perceive and understand its environment and bring about an effect in that 

environment. For an MCPS, if one considers the crew or user as part of the system during 

its operation, then intelligent behavior can be realized as fully autonomous or as human-

machine interaction. Intelligent behavior includes mission and task-oriented behavior 

driven by discrete events and that form the top level of an application control hierarchy. 

Intelligent behavior also includes “intelligent detection and control behavior” that sense 

or act in a dynamic environment and can be continuous time based. In a CPS, intelligent 

behavior represents a distinct type of computation. 

CPS have also been described as “integrations of computation with physical 

processes” (Lee 2008). Figure 2 shows a MCPS viewed as the integration of “physical 

behavior” or processes and “cyber behavior” or computation. A set of physical 

mechanisms realize physical behavior and direct energy and/or transfer material to, from, 



 4 

and within the system to achieve an effect in the external environment, or maintain some 

relative state in a dynamic environment. The mobility aspect of these systems increases 

the state properties of interest because even static properties in the external environment 

can now have a state relative to a moving system. A set of physical components realize 

cyber behavior and generate or transform signals into information to, from, and within 

the system and then perform computations on that information. The cyber components 

realize the four types of behavior logic as required to effectively control the physical 

mechanisms, manage its own information and data state variables, and make decisions 

about behavior. In the model, a human is a cyber component that acts through the 

physical mechanisms of the system and is considered part of the system or contained 

within the system boundary. 

 

Figure 2.  General MCPS Model 

The challenge of realizing a MCPS with the full range of behavior logic described 

above is not only to sufficiently capture and integrate with the physical mechanisms, but 

do so within a larger systems engineering approach that can inform decisions about the 

entire systems architecture. The systems engineering includes selection of the 

components and mechanisms, determination of the overall internal/external structure and 

boundary, and achieving necessary performance within constraints. To accomplish this, 

the needed behavior logic must be captured solution independent and in a way that 

facilitates the assessment of potential solutions. What follows is a background as to how 
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these issues impact an MCPS architecture concept design. This will be viewed through 

the lens of the MIGVS domain. 

1. An Historical Perspective on System Behavior Logic 

Classical systems engineering methods for analyzing behavior logic, such as 

functional analysis and functional flow block diagrams (Blanchard and Fabrycky 2011, 

86–93), emerged when systems were still largely mechanical and physical. The behavior 

logic is modeled as functions to transform inputs to outputs within a mission thread. 

Functions and functional flows are readily understood and can be reasoned about by 

multi-disciplinary teams, to include non-technical members. They are also inherently 

solution independent. The control by the functional flows represented could be realized 

by relatively simple devices such as servos and regulators directly linked to the physical 

mechanisms or machines. 

The initial application of cyber technologies were first used to achieve advances 

in machine control, precision, and accuracy. This application resulted in improvements to 

thread performance of physical driven behaviors and fit within classical functional 

analysis, though functional flow analysis now had a greater emphasis on feedback control 

logic. However, as systems added more discrete software, automation, and/or autonomy 

to augment human operator capability, the resultant intelligent behavior has either an a 

priori allocation to human or machine execution, or presumes that this allocation can be 

addressed in software development after the hardware is rationalized and major trade 

space decisions accomplished. If the a priori allocation was not sufficiently analyzed or 

sufficiently captured, it cannot be adequately considered in the subsequent system 

engineering effort. In particular, the events and effects relative to any specified functional 

inputs and outputs will not be systematically and comprehensively linked. 

The application of general purpose computing and associated software to weapons 

systems and other defense and non-defense systems, led to a common view of behavior 

logic between systems and software engineering under a formal method known as 

structured analysis and design technique (SADT) (Ross 1977). SADT was codified for 

the federal government under the Integrated (I) Computer Aided Manufacturing 



 6 

Definition (DEF) modeling standards, particularly IDEF0 and IDEF1X. The latter being a 

data modeling standard considered necessary for software. 

SADT or “algorithmic decomposition” (Booch et al. 2007) when applied to large 

scale discrete event software has been associated with issues of scalability, modularity, 

and a lack of intermediate forms (Booch et al. 2007). The behavior must be mapped to 

component implementations which often occur at higher level assemblies, and then 

further decomposed. A working model of behavior often does not occur until late in the 

development process and often subsequently to implementation decisions. If 

requirements change or the implementation is not decided correctly, it is difficult to 

isolate the change and consequently many different parts of the implementation can be 

impacted.   

Object-oriented analysis and design (OOAD) methods emerged for large scale 

discrete software development efforts (Fichman and Kemerer 1992). The applications or 

domain logic is organized around classes/objects that encapsulate behavior and state and 

that interact to realize the system’s behavior. These classes/objects help organize very 

complex logic in a systematic way, enable analysis of the system at a relatively high level 

of abstraction, enable modification and incremental increases in fidelity, and enable reuse 

of the objects to the extent that the domain logic is similar. It should be noted that SADT 

and OOAD are orthogonal methods to accomplish the same objective and cannot be used 

simultaneously to construct a system (Booch et al. 2007). An overarching OOAD 

“systems” methodology is exemplified by the practice surrounding the Unified Modeling 

Language (UML). UML evolved from OOAD via the Rational Unified Process (Rational 

1998) combining concepts from James Rumbaugh, Grady Booch, and Ivar Jacobson. The 

architecture practice evolved from an original “4+1” view model concept (Krutchen 

1995). As the practice has evolved, some of the names and meanings of these views has 

evolved as well. They are shown in Figure 3, and are defined in a way that better relates 

to an MIGVS context, but remain similar to their original form. The objects model “real 

world” entities in terms of classes that comprise the system. Secondly, the logic at the 

leaf level of classes and object can reflect relatively low levels of software code or an 

implementation and thus a direct instantiation of a software “physical” component 
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solution. Finally, software objects aggregate up in higher level software assemblies like 

programs, software configuration items, and executables. These elements constitute the 

“physical embodiment” of the software that are deployed to the hardware in the 

Deployment View. The one view in the “4+1” view model are use cases. Use cases can 

be described as a “goal-oriented set of interactions between external actors and the 

system under consideration” (Malan and Bredemeyer 2001). A use case provides a 

mechanism to determine critical functions as the system interacts with the external 

context, at least external “users.” Use cases can be arranged in a hierarchy at various 

levels of detail or abstraction (Topper and Horner 2013). 

 

Figure 3.  An OOAD 4+1 Architecture Model View. 
Adapted from No Magic (2015). 

As mentioned previously, OOAD has found significant application for large 

discrete-event software systems. From an MIGVS standpoint, consideration must be 

given to how the discrete event-based techniques of OOAD apply to its other forms of 

behavior logic and their subsequent capture in the system concept design. Adaptations 

can be addressed for simple functional and continuous real time behavior to support 

software design (Douglas 2004). However, within a systems engineering framework, the 

behavior and software are first rationalized as part of a larger system level abstraction 

with all forms of behavior logic as well as non-computational hardware and other system 

constraints to be considered. There is not equivalent consideration given to analyzing the 
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physical mechanical hardware nor its interdependency with the software as part of the 

larger system concept design. The basic premise of a use case reflects a bias toward 

transaction-based interfaces with users rather than effects-based external impacts of 

physical-mechanical hardware. OOAD techniques must rely on some other systems 

engineering activity to sort this out and decided that software of a certain capability is 

required as part of a larger system solution. MCPS need not only understand critical 

behavior in the context of goals, but must understand and reason about the goals 

themselves as well as any associated state space. 

Information systems engineering and integration eventually emerged as a 

relatively separate discipline to design and build business applications. Areas such as 

information management, data base design, service-oriented architecture (SOA) and 

enterprise architecture, brought a new emphasis on business processes and business 

organization as a key consideration in the derivation of a system’s behavior logic. 

Enterprise architecture in particular can be viewed as “a high level design of the entire 

business” (Giachetti 2010), to include the modeling of the business processes and the 

interaction with the external environment. In this sense, it represents an initial form of a 

kind of intelligent behavior modeling and another type of cyber driven behavior logic. 

The highest level of behavior is modeled to include its purpose or goal. The business 

processes have a hierarchy similar to functions that can go by different names: activity, 

tasks, steps, etc. When needed, the term task will be distinguished by the implied 

completion of work and can often be associated with a goal, whereas activity will refer to 

the more general abstraction of movement or energy. 

The enterprise view of system architecture for military systems is exemplified by 

the Department of Defense Architecture Framework (DODAF) Version 2.0.2 (CIO DOD 

2010) and is mandated by the Manual for the Operation of the Joint Capabilities 

Integration and Development System (JCIDS), 12 February 2015. It takes many concepts 

from enterprise architecture and SOA and applies them to the operational behavior of 

military systems. It provides unique emphasis on aspects important to CPS concept 

design: interoperability, operational behavior threads in response to events, and 

identification and integration of operational activities with system functions. As shown in 
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Figure 4, it also has a concept architecture data metamodel (DM2) that explicitly captures 

the architecture concepts so that these concepts can be better understood and reasoned 

about.  

 

Figure 4.  DODAF Concept Data Meta Model. Source: DOD CIO (n.d). 

Though the DODAF is not a methodology, the viewpoints certainly have 

methodological implications as does its original establishment and evolution as an 

enterprise architecture. DODAF fundamentally supports a structured method, albeit a 

more complex one. Operational tasks activities are decomposed to system functions that 

can be further decomposed. The DM2 has supporting viewpoints that account for events 

and effects. However, although responding to events is accounted for in the DM2 in 

certain viewpoints, delivering effects the context is not formally modeled beyond 

“friendly” systems or organizations and interoperability concerns. Though there is a 

Services Viewpoint that includes measures of effectiveness (MOEs), there is no other 

viewpoint that would include depicting any context MOE that is not a resource. A goal is 

viewed as a capability which in turn is the desired state of a resource. In that sense, the 

context is more limiting than that of use cases. The interoperability and service focus and 

enterprise background also suggest a human transactional bias and world effects are not 

addressed. Finally, though it is stated that everything has states, it would seem that the 
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state of an activity means something different than the state of physical thing or software 

object. 

Enterprise systems have an underlying information-based system model (i.e., 

users in a business office environment interacting via work stations connected by a 

network and supported by servers). Military command and control looks less like a 

standalone information system as the unit under consideration gets smaller and smaller 

and more directly interacts with a physical dynamic environment. Though not real time, 

timing is a factor in the behavior of these small unit C4ISR systems which makes large 

scale data base approaches less feasible. Specialized performance and constraints to 

synchronize and coordinate effects must be considered. However, there are some useful 

concepts that can be leveraged into an MIGVS architecture. The concept of modeling 

operational or business behavior logic as part of the overall architecture is particularly 

critical, especially if that behavior is to be realized whole or in part by the system. This is 

the case for the task-oriented part of intelligent behavior, even if it is only supporting 

information processing within that behavior. The concept of a node as an abstraction of a 

computational element within the architecture could be well utilized within a systems 

engineering framework, though its definition of “where information is processed” would 

have to be expanded to include managing work. The concept of mapping operational 

activities to system functions is a realization that there is a complex logical hierarchy that 

executes within a MIGVS. 

Military systems perform or support tasks with a goal or end state to be achieve 

by work. This is true even for a C4ISR, particularly for a forward unit that is using 

interoperability and synchronization to achieve a specific mission objective or purpose. 

Task and mission behavior logic has always been critically important to a weapon 

system, particularly when we consider the human operator as a cyber component in the 

execution of that logic. In the sense of making the human an element of the system, a 

ground vehicle weapon system has always been a MIGVS. Until the introduction of on-

board digital and software components to process information, the human interaction 

with the system was typically treated as a separate concern and mostly a design activity 

distinct from the system architecture definition. This information processing can be 
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utilized not only to aid the execution of unit level command and control, but can also be 

utilized to aid realization of system mission and task execution. The mission and task 

logic form a hierarchy of logic when integrated with machine behavior can accomplish 

work or goals beyond information processing. It is the realization of cyber-physical 

behavior.  

A good example of realizing a system cyber-physical behavior is the hunter-killer 

capability (NGAUS 2014) within the Abrams Main Battle Tank. The hunter-killer 

capability was realized with the addition of the following information acquisition and 

processing components: an independent target acquisition suite for the commander, a 

commander’s display and supporting processor, a gunner’s display and supporting 

processor, a network to exchange information between commander and gunner, and 

software. These components in concert with the commander and gunner achieve a higher 

rate of target acquisition and kill under certain offensive and defensive operational 

scenarios. The increase in effectiveness relies on integration of the weapon and mobility 

physical-mechanical components as well as low-level physical behaviors such as move 

and shoot, it is achieved without any improvements to those capabilities. Furthermore, at 

a high level of abstraction, the commander and gunner do what they have always done in 

terms of coordinating target acquisition and firing priorities. The addition of information 

and processing components improved the coordination or control between the 

commander and gunner beyond direct human interaction. An increase to a measure of 

effectiveness (MOE) was achieved with the additional cyber capability as an intermediate 

level of control between the existing higher level cyber-capability (i.e., commander and 

gunner), and the lower level cyber-capability (i.e., direct control of the physical-

mechanical components). 

Any MIGVS has at least the same hierarchy of cyber capability just described, 

more if a given human operator is abstracted into a set of objects based on roles. Roles 

include managing the mission overall, performing primary tasks such as driving, and 

performing support tasks such as obstacle or threat detection. Each role-based object has 

associated MOEs and are supported by system components with measures of 

performance (MOPs). Mission effectiveness is supported by task effectiveness, which in 
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turn is supported by system performance and then technological performance (Spero et 

al. 2014). There is a hierarchy of cyber control with a hierarchy of MOEs/MOPs. 

Measures of mission effectiveness can be linked through the hierarchy to cyber 

components, such as the aforementioned information and processing components. 

(Badger et al. 2013). 

A given MIGVS needs to achieve a certain operational effectiveness whether it 

has a full crew complement, full autonomy or something in between. The crew can be 

considered part of the “product set,” and crew size, including zero, as part of the trade 

space in system concept design. Operational tasks need to be identified and allocated to 

the crew and/or an autonomous technology solution. Various combinations of these 

“products” need to be assessed for their impact on cost and operational effectiveness. 

These products must also be combined with more “standard” software products utilized 

for information management and other system logic and also assessed as part of the trade 

space. This requires a view into the product set that can be directly linked to the behavior 

and attributes and not biased toward a physical assembly and containment solution, to 

include a human operator as a particular type of physical assembly 

It is not straightforward to assess the operational effectiveness with MOEs 

indistinguishable from crew versus technology solutions. The U.S. Army has much 

doctrine, task lists, field manuals, and unit training guides that describe what tasks the 

crew are to accomplish. Quantitative measures relative to the task execution along with 

their quantitative contribution to overall mission effectiveness are not as well specified. 

Mission and task MOEs are scenario dependent with variables of mission, enemy, terrain 

and weather, troops and support available, time available and civil considerations (METT 

TC) (ADRP 3–0, 2012). METT TC variables have a probability of occurrence with a 

certain degree of concurrency relative to each other for any given scenario. Event profiles 

(i.e., the probability and frequency of event occurrence), are not typically available and 

must be estimated to determine the system response, to include the crew, as well as 

measure its effectiveness. The system response in turn has an internal hierarchy of 

response dependencies through the product set that contributes to task execution.  
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Agent-related methods is a way to model intelligent behavior. The increasing 

emphasis on autonomous systems are likely to lead to widespread embedded agent 

application in the near future. Agent approaches are used currently in various simulation 

tools to support MIGVS analysis, but most simulation-based approaches are focused on 

the interaction of a large number of simple agents for domains that fit a more theoretical 

definition of a complex system. If one considers the “as is” physical embodiment of the 

agents as crew members that interact as part of the system, a MIGVS has fewer but 

higher level fidelity agents. The focus here will be on agent methods for “systems” that 

more closely resemble these MIGVS agents. Like most of the previous behavior logic 

review, these agent methods find their lineage in software. It is worth noting here that a 

simulation of a system is essentially a simulation of the behavior of an autonomous 

vehicle system, except for perhaps scope and fidelity. If the behavior logic was 

“perfectly” or “fully” simulated, then all the necessary behavior logic to realize an 

autonomous system would be defined. 

Agent-oriented software engineering (AoSE) has only recently emerged from a 

“nascent field of research” to some areas of application, such as industrial agents and 

other multi-agent systems (Tveit 2001). Most AoSE techniques recognize similarity and 

distinction between objects in OOAD and agents in agent-oriented analysis and design 

(AOAD). Some methodologies like Gaia (Woodbridge et al. 2000) require a more 

significant departure between how agents are defined and modeled versus objects. Other 

methodologies, such as Multiagent Systems Engineering (MaSE) (Deloach et al. 2001), 

view agents in terms of extensions or specializations of objects. Supporting techniques 

like agent UML (AUML) (Odell et al. 2000) see leveraging object techniques as “risk 

reduction” for the relatively new agent technology. 

The observable behavior of an MIGVS as a black box could be considered to be 

the same whether it is fully crewed or fully autonomous. As discussed previously, the 

crew itself can be modeled as agents where each crew member is decomposed into 

multiple agents based on role decomposition. Multi-agents combine within and between 

systems to form larger hierarchical unit that performs task-oriented operations as 

considered in the link of agent development to organization theory (Argente et al. 2006). 
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As such, logically linking agents and objects holds the promise of linking military units 

through the MIGVS to relatively granular role-based agents that interact with non-agents 

objects and entities. This should enable the integration of all forms of behavior logic from 

high level tasks to physical interactions with the environment, at least at some level of 

abstraction. 

2. Model-Based System Concept Design 

System concept design has been described as the “most important phase” in 

system development and one that translates a problem into a need and then a preferred 

solution (Blanchard and Fabrycky 2011, 56). Concept design includes a solution 

independent behavior design that meet operational needs as well as the physical concept 

of the preferred solution. Solution independent part of concept design must be done in a 

way that can be translated into more detailed behavior and physical design. Classically, 

concept design is done by analyzing the system behavior using FFBDs and then mapping 

or allocating portions of the behavior to some high level representation of the system 

hardware. Increasingly, the concept design phase is realized within a model based 

systems engineering (MBSE) is increasingly used to define a descriptive model (NDIA 

2011) to support concept development (INCOSE 2007). Concept design supports 

embodiment design in a product design and development process and includes 3D CAD 

modeling (Arunachalam, Prakash, and Rajesh 2014). Mass properties and physical 

mechanical behavior can be conceptualized in a 3D CAD language, but not higher levels 

of behavior. MIGVS concept design requires a 3D CAD concept model integrated with 

ability to model higher levels of behavior.  

SysML, in particular when coupled with the Object Oriented Systems 

Engineering Methodology (OOSEM) (OMG MBSE Wiki 2011), can be thought to 

provide some support to SADT and OOAD methods. Any structural abstraction can 

be modeled as a block extending the notion of a class beyond software. SysML also 

supports use case modeling to derive critical functions in a goal-oriented context, direct 

linkage and traceability to requirements, and behavior modeling techniques found in 

UML (i.e., activity, sequence, and state machines). SysML also has concepts for both 
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functional and logical architecture modeling distinct from a physical implementation. 

However, OOSEM utilizing SysML in practice generally follows a SADT approach for 

logical analysis with the addition of use cases and a facility for mapping to logical 

objects. Functional flows are modeled in activity diagram and data flows in sequence 

diagrams. It is seeks to combine structured and object-oriented analysis (i.e., combine 

two orthogonal techniques to simultaneously construct the same system) (Booch et al. 

2007, 22). OOSEM seems to be closer to an object oriented technique if the logic is 

relatively simple (e.g., a logical hierarchy of one or two levels). When the logic is more 

complex, the bias is toward a complex functional architecture with one level of 

abstraction object logic above implementation as a facility for mapping (Hart 2015). Like 

the use of FFBDs, the tendency also is to focus on the control of physical mechanical 

behavior and assume higher level logic, if needed, can be deferred to a later stage 

software design. 

Concept design of a ground vehicle system, in general, proceeds much like 

any weapon system concept design within a Department of Defense (DOD) acquisition 

and JCIDS based development. An initial set of desired operational capabilities is 

supported by trade space exploration, technology development, continued operational 

analysis, system requirements development, system analysis, and perhaps some system 

demonstrations. Typically, the ground vehicle community generates one or more physical 

concept designs in CAD models as an aid to these activities. The output is a selected 

feasible system concept, a finalized operational capability document, a system 

performance specification, a system cost estimate, and an acquisition approach. The 

concept design then matures toward a preliminary design or the full embodiment of the 

system architecture and details the interfaces between products. However, almost by 

definition, the major trades that determine the system architecture and identify the major 

products and technologies are usually completed with the concept design. 

The cost estimate usually conforms to a standard surface vehicle work breakdown 

structure (WBS) (MIL-STD-881C Appendix G 2011). A portion of the WBS, shown in 

Figure 5, represents a product view of the system. It is meant to form a common, 

repeatable, and relatively granular domain structural logic of the systems products or 
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technology. The product structure is instantiate with specific technology solutions. For 

instance, Suspension/Steering would include considerations of track versus wheels; 

active, semi-active or standard suspension; braking systems, etc. Similar considerations 

can be done for other product groupings such as Survivability, Communications, Fire 

Control, etc. These technologies are then “integrated” into subsystems, sub-assemblies, 

major assemblies, etc., to form a system concept to meets its performance requirements 

and constraints. The system concept evolves based on performance and constraint 

analysis until the most feasible concept is determined. The CAD model is used to 

generate a high-level engineering bill of materials (EBOM) used for cost estimating. The 

most feasible concept is used to build an acquisition program budget. 

 

Figure 5.  Ground Vehicle System “Product” WBS. 
Source: MIL-STD-881C Appendix G (2010). 
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Like many other systems engineering techniques, the product view of a WBS first 

emerged when systems were predominantly composed of physical mechanisms and some 

associated control system technology. With the increasing embedded application of 

digital/information technology or higher level cyber components, the following problems 

begin to arise: 

a. The granularity of the physical mechanisms as compared to the granularity 

of cyber components are not equivalent, except for direct control that can be associated 

with the physical mechanism (e.g., fire control). The higher level cyber products are 

allocated to relatively large “buckets,” such as vehicle electronics and Primary Vehicle 

Software #1. Software #1 provides little insight into what that software does, how it 

would impact a trade space, and is often left to large design efforts. It is roughly 

equivalent to describing the physical mechanisms as Physical Assembly #1, Physical 

Assembly #2, etc. 

b. Products previously considered outside the system boundary, such as 

certain training, maintenance, and test components, may now be included wholly within 

the system boundary or split between on-board and off-board capability. If included in 

the system, the connection to any related off-board cost is lost. It also tends to skew cost 

comparisons between primary vehicle systems that have this capability embedded versus 

those that do not. For example, a system may have embedded training and/or embedded 

diagnostics/prognostics that wholly or at least in part replace off-board training and 

maintenance equipment. Presumably off-board costs would go down and primary vehicle 

costs would go up. An effective trade space analysis would have to account for the 

capability and cost of the embedded components together with the off-board 

“components” and determine the best combination. When compared to other primary 

vehicles costs and capabilities, it would not appear to be more expensive with little 

insight into the higher cost, yet it might in fact improve training and maintenance and 

therefore the readiness of the system. 

c. Much of the higher level cyber products are developed separately from the 

system, provided as government furnished equipment (GFE), and not included in the 

WBS. The GFE often overlaps with WBS elements only generally described as 
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electronics and software. The overlap results in a more costly and sub-optimized concept 

design in terms of integration constraints which are difficult to identify let alone rectify. 

Attempts by the system developer to eliminate duplication and improve GFE integration 

usually get reflected as a cost to the system. The developer’s system appears more costly 

when compared to a similar system with sub-optimized GFE integration. 

d. Task-oriented behavior allocated to cyber components are identified as 

system costs. Task-oriented behavior allocated to the soldier are not identified as system 

cost. A system with cyber components with equivalent or better operational effectiveness 

is at a cost disadvantage as long as the cost of the soldier is zero. However, the cost of the 

solider in terms of housing, training, etc., is not zero. 

All of the issues above can be addressed or at least mitigated, if the cyber 

components or objects can be structured with similar granularity as the physical-

mechanical components. Role-based agent objects like mission agent, driving agent and 

obstacle detection agent provide object granularity into the system’s logic. These objects 

can then be combined with a compatible set of physical objects similar to the existing set 

in 881C. The crew can then be considered part of the physical architecture solution and 

used for certain cost and performance comparisons. 

Programs need the ability to consider the crew relative to the system product set 

or to abstract the crew into a “technology neutral” product set. Agents can be utilized to 

capture the crew behavior to a fairly granular degree appropriate for concept design while 

remaining technology neutral; that is, the agents can be allocated back to the crew with 

associate training standards, realized by cyber technology, or both. Agent objects 

integrated with non-agent system objects determine the full system response. Soldier 

workload and computational resource loading can be assessed with the allocation of 

agents and objects to technology. The right side of Figure 6 shows an integrated 

operational and system model for behavior formed when the technology neutral object 

model is extended with technology selection. The left side of Figure 6 shows an 

information translation loss from operational model to operational requirements narrative 

to system requirements narrative to system model. Information translation loss can be 
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avoided if the requirements are integrated with and extractable from an integrated 

operational and system behavior model. 

The integrated operational and system behavior model relates primarily to task 

and functional requirements. Task requirements are often unspecified because they are 

presumed to be executed by an operator. Other requirements may be better expressed in 

other types of models or as narrative. System mass property requirements are best 

captured in a CAD model. There may be functional or constraint requirements that reflect 

standard practice and/or lessons learned that would not be revealed as a decomposition of 

an operational behavior. Also, narrative requirements will likely always be needed for 

non-technical stakeholders, such as program managers and contract officials. Therefore, 

an integrated and operational and system behavior model, like other operational and 

system models, are best viewed as a companion to a narrative set of requirements. 

 
    a.                b. 

Figure 6.  Integration of Operational and System Models 

Logical concept design is a solution-independent model of the problem domain 

that describes what the system has to do. Logical concept design is typically associated 

with defining a functional architecture (Blanchard and Fabrycky 2011, 93). As Blanchard 

and Fabrycky explain, concept design is complete when the system architecture is 

defined (i.e., the functional architecture is mapped into a physical architecture supported 
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by trade-off analysis). Completion of concept design leads to the preliminary design in a 

systems engineering development process. Blanchard and Fabrycky acknowledge the 

completion of concept design with a concept design review. Concept design completion 

would have to occur as part of the system functional review (SFR) in current systems 

engineering practice for the DOD (Department of the Navy [DN] 2015). 

A logical concept design that integrates operational and system behavior ideally 

initiates as part of the earliest formulation of a program (i.e., coincident with or shortly 

after operational need definition and early operational analysis). The logical concept 

design would mature as needed through early program phases and formal reviews (e.g., 

system requirements review [SRR]). The use of the logical concept design in the 

development of the system architecture enables trade-off analysis to address physical 

architecture impacts to both the system and operational behavior. The resultant physical 

architecture would also include both hardware and software architectures. Greater agility 

is therefore enabled from operational need definition through final concept design, 

Standard reviews such as SRR and software specification review are still held as needed 

to mark firm decision points or baselines and would include a concept design maturity 

assessment. Ideally, a more focused concept design review would be held to finalize 

concept design as opposed to being a part of SFR. In either case, the preliminary design 

phase can proceed as before. 

The impact of cyber components and cyber capability can also be revealed 

anecdotally. An F-35 pilot, Lieutenant Colonel David Berke (Martin 2014), after agreeing 

that the F-35 does not fly any faster, or maneuver more sharply, than other planes, stated 

that:  “Those are metrics of a bygone era. Those are ways to validate or value an airplane 

that just don’t apply anymore…The biggest big deal is the information this airplane 

gathers and processes and gives to me as the pilot.” Though there is perhaps an equal risk 

in underestimating the value of the system’s mechanical performance to the overall 

system behavior, it is certain that a system with several million software lines of code has 

a cyber-intensive behavior component that is now interdependent with a tradition weapon 

system’s physical-mechanical intensive behavior component. A system concept design 
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for this type of CPS must be capable of simultaneously modeling both types of 

components, their interdependence, and their respective impact on mission effectiveness. 

3. Summary 

MCPS, particularly when we include the operator, reflect key features of CPS: 

cyber and physical intensive, cyber and physical interdependence of behavior and 

attributes, and multiple classes of computation. The behavior or the anticipated behavior 

of the embedded operator(s) in a MIGVS can be extracted out into solution independent 

logic objects based on roles. The role-based objects are mission and goal oriented and 

arranged in an interdependent hierarchy of logic or cyber behavior. 

SE methodologies or implicit methodologies in architecture frameworks or a 

system language like SysML, have brought certain advantages and disadvantages to 

system concept design, as summarized in Table 1. MIGVS behavior concept design 

requires a superset of these features: 

(1) Solution Independence 

(2) Integrate operational and system behavior 

(3) Model intelligent behavior 

(4) The ability to directly reason about state 

(5) Component objects that can directly translate to component 
implementation 

(6) Equivalent consideration to human, software, hardware and physical-
mechanical behavior and their component abstractions 

(7) Enable component assembly alternatives 
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Table 1.   Concept Design Methods and Considerations 

Method Advantages Disadvantages 
Structured System 
Analysis & Design 
(e.g., FFBD) 

1. Solution Independent 
2. Straightforward reasoning of 
functional behavior relative to 
inputs and outputs. 

1. Not directly translated to 
implementation leading to 
concerns about modularity and 
scalability 
2. Imprecise level of 
decomposition relative to 
component allocation 
3. Behavior often not fully 
understood until after an 
allocation to a set of high level 
assemblies 
4. No direct reasoning about 
state, operational behavior, 
event/effects, or intelligence 

Software Object-
Oriented Analysis and 
Design 

1. Can directly reason about state 
2. Classes/objects lead to direct 
component implementation 
facilitating modularity and 
scalability 
3. Assembly independent 
4. Use cases generate critical 
functionality relative to the system 
context and can be goal oriented. 

1. Not a whole system 
approach– just software 
2. Limitations of use cases: 
simple context and no explicit 
support for modeling effects, 
intelligence, and 
concurrency/interdependency 

Enterprise Analysis & 
Design 

1. Explicit meta model for 
architecture concepts and 
relationships 
2. Support business or operational 
modeling and associated events 
3. Supports direct linkage of 
operational activities and system 
functions. 

1. SSAD approach only more 
complex with many of its 
disadvantages 
2. Human transactional and 
interoperability centric versus 
goal and effects based 
3. No direct support for 
modeling context, effects and 
intelligence 

SysML Based MBSE 
Considerations (e.g., 
OOSEM) 

1. Concept of a block supports 
flexibility of class definitions 
beyond what is implemented in 
software 
2. Provides some facility beyond 
SSAD for mapping behavior to 
implementation 
3. Many SSAD advantages 
4. OOAD use case advantages 

1. Mix of orthogonal methods: 
SSAD and OOAD and has 
SSAD disadvantages for 
complex logic 
2. Bias towards hardware and 
low level physical mechanical 
behavior with cyber behavior 
deferred to later development 
3. OOAD use case 
disadvantages. 
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The systems engineer of CPS now requires methods to capture the full range or 

heterogeneity of behavior discussed here and its relation to physical aspects of the 

system. These methods must address:  

(1) Capture of intelligent behavior  

(2) Specification of operational tasks not associated with unit command 

(3) Task allocation to operator versus machine 

(4) Trade off analysis of cyber and physical capability and components 

(5) Sufficient logical behavior analysis prior physical architecture decisions 

(6) Decomposition and allocation of MOEs/MOPs for behavior 

(7) Descriptive methods that inform product development with sufficient 
behavior comprehensiveness. 

These methods have to be model based given the complexity and multi-disciplinary 

nature of CPS and the emergence of model based methods in both systems engineering, 

software engineering and product development. Additionally, the behavior logic is better 

addressed in models rather than with requirements narrative. These methods will also 

need to enable the allocation of cyber behavior models to support design as well as form 

a system architecture and decision baseline at a system concept level of abstraction. 

B. PROBLEM STATEMENT 

MIGVS have levels of CPS behavior logic with features that are not addressed by 

current behavior modeling methodologies and approaches. As a result, the system’s 

higher level behavior, including intelligent behavior, is not effectively captured and 

therefore sub-optimally considered in concept design.  

C. RESEARCH SCOPE AND OBJECTIVES 

The purpose of this research is to define and demonstrate approaches and 

concepts to effectively capture MIGVS behavior logic for concept design. The research 

proposed an overarching architecture concept data metamodel (DM2), shown in Figure 7, 

that identifies key architecture structural and behavior concepts. 
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Figure 7.  MIGVS Architecture Concept DM2 

The key structural and behavioral concepts are as follows: 

(1) System Performer Objects 

(2) Context Objects  

(3) System Connected context objects like payload and operating resources 

(4) Missions defined by Goals that reflect a desired trajectory through the 
state space 

(5) Agent Logical Objects that are a specialized type of performer objects 

(6) Behavior as state change driven by interactions between objects 

As in software OOAD, objects can be organized and analyzed as class 

abstractions. Unlike OOAD, these classes are not abstractions of software code, but are 

abstractions of any physical object, that may include software code. The classes are 

logical concepts that enable system concept analysis and design. The MIGVS DM2 is 

supported by the following archetypical classes: Context, Performer, Agent, Goal, 

Payload, and Operating Resource. 

These classes can be detailed and decomposed for a given application or domain, 

and used to construct a system and context model. Decomposition can be done to the 
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point of component types, but not dictate a specific solution or technology. Specific 

missions and goals can also be decomposed to reflect desired behaviors expressed in 

terms of context and/or performer object states. Performer and context objects change 

state through object to object interactions, including internal system object interactions 

and system to context interactions that represent events and effects. The model once fully 

developed would represent the initial concept design. Specific solutions can then be 

directly instantiated from the leaf level objects of the initial concept design. Different 

alternatives can be considered subject to different constraints and trades conducted and 

aggregated into physical assemblies, including “human assemblies,” much like 

transitioning from the logical view to the physical view in software OOAD. In this case, 

the physical view would result in the final concept design. 

The structural and behavior concepts just described are detailed and applied to a 

case study and an initial concept design of a PLS. The behavior of a manned PLS is 

abstracted into a set of implementation independent interacting objects. The mission will 

be a convoy and the system a follower system of that convoy. The case study artifacts 

will then be analyzed against the original concepts and research questions and 

conclusions and recommendations drawn. 

D. RESEARCH QUESTIONS 

Can the intelligent MCPS concept DM2 and its supporting foundational concepts 

be used to generate a system logical concept design behavior model that: 

(1) Is independent of specific technological solutions, to include any human 
operator(s)? 

(2) Gives equivalent consideration of functional, state based discrete, state 
based continuous, and intelligent behavior? 

(3) Integrates operational and system behavior? 

(4) Enables direct translation to component solutions with scalability and 
modularity? 

(5) Is independent of a particular component assembly approach? 
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E. RESEARCH VALUE AND METHOD 

This research adapts and advances systems engineering and MBSE methods to 

address cyber concerns. The research develops a framework that enables cyber concerns 

to be addressed equivalent to physical-mechanical and overall system concerns as part of 

system concept design. Use of the framework results an early component-based model of 

behavior that can integrate with other components and capability into a trade space. This 

model of behavior can also inform or provide a specification baseline for embodiment 

and/or configuration item product design beyond an allocated set of requirements 

expressed as narrative. Many emergent systems can be classified as MCPS, including 

most DOD weapon systems, and could leverage these concepts. 

Much CPS development and research starts with the assumption that a CPS 

system is needed and there is sufficient knowledge of the requirements or desired 

behavior. This research will enable a more definitive determination of the value of a CPS 

system, its scope, and its needed behavior and capability. More alternative approaches to 

CPS system composition can be assessed, including that a CPS approach may not be 

worth pursuing. It also incorporates consideration of the human role and human 

intelligence into the CPS design that includes an agent as a potential model of 

computation which may warrant unique considerations. 

The research method is design science and is patterned after design science of 

information systems. Information systems design science research can be distinguished 

from empirical and experimental research as seeking to shape the existing world versus 

explaining or describing the world (Iivari, 2007). More specifically design science can be 

distinguished between a paradigm of behavioral science that “seeks to develop and verify 

theories that explain or predict human or organizational behavior,” and a paradigm of 

design science that “seeks to extend the boundaries of human and organizational 

capabilities by creating new and innovative artifacts” (Hevner, et al. 2004). Several 

design science research methodologies have been postulated to provide a framework and 

rigor for design science. The similarity of an information system design and an 

information-intensive MCPS concept design, warrants a similar design science method. A 
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design science research method based on an information system (Peffers, et al. 2008) was 

selected and the “activities” modified for NPS SE dissertation requirements as follows: 

a. Problem Identification and Motivation 

Conduct the background investigation and literature search necessary to 

specifically state the problems and identify the value if the problem is solved. This is 

captured in Dissertation Sections I.A and II. The value of the research in the context of 

the literature search is defined in Section I.E.1. 

b. Define Solution Objectives 

The solution objectives and the expected value should be “inferred rationally” 

from the problem statement, background and literature search. The objectives have been 

defined by the research objectives or hypotheses and the research questions as captured in 

Section I.C and I.D. 

c. Create the Meta-artifacts 

Information systems design research strategy can be described as building a meta-

artifact (Iivari 2015), where the meta-artifact is “a general solution concept to a class of 

problems.”  Iivari further points out that an innovative meta-artifact is the outcome of the 

research and must be built as opposed to simply evaluated. This approach to research will 

be used, except that the research applies generally to systems or systems engineering 

versus information systems, with the particular class of problems being MIGVS with 

some extension to MCPS. The meta-artifacts are the Concept DM2, the “Agent and 

Object Oriented Behavior Model,” and the underlying concepts and class archetypes. 

These concepts will be fully developed and described in Section III. 

d. Generate the artifact from the meta-artifacts 

A particular instance of an initial system concept design will be generated from 

the meta-artifacts as indicated in the case study description. An agent and object oriented 

behavior model of the “as is” behavior of the current two-persons crew operated PLS 

system will be developed. This will represent a technologically neutral view of the “as is” 
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logical behavior. This “as is” behavior can be mapped to either human of machine 

solution for all forms of behavior. 

e. Demonstrate and verify with a design artifact that the meta-design 
addresses the problem and meets the solution objectives 

The preferred PLS concept is the demonstration design artifact. The contribution 

of the meta-design toward defining the PLS logical concept design and addressing the 

MCPS defined problems, research objectives, and research questions will be analyzed 

and captured in Section IV. The analysis will seek to determine: 

(1) Whether the concept design initial agent and object oriented model was 
both technologically neutral and a model of the understood operational 
behavior. 

(2) Whether the all forms of behavior are represented in the model. 

(3) The overall usefulness of the meta-design in generating the system 
concept design  

f. Interpret and Communicate the Results 

The analysis will be further interpreted and conclusions and recommendation 

drawn. The final dissertation will reflect the communication of the results as well the 

overall approach. The researcher will create and refine the meta-design concepts. The 

researcher will generate the case study concept design model alternatives, except for the 

mobility model which will be generated by the project team. The case study models and 

some of the meta-design will be generated in SysML. The project team will also collect 

and/or generate:  

(1) Operational and requirements source data 

(2) Convoy mission thread analysis 

(3) General SysML modeling techniques and procedures 

(4) Comment and feedback on the researcher’s meta-design and case study 
SysML model 
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Original source data will be current convoy doctrine, draft CDDs, standards 

utilized in requirements, a MOE/MOP framework (Badger, et al. 2013) an external 

context model (JC3IEDM 2007), and SysML modeling guidelines. Some of the source 

data is Distribution D or FOUO. The resultant project concept model is also likely to be 

FOUO and perhaps some of case study analysis. However, the research concepts and 

most aspects of the analysis are not expected to be restricted. 
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II. PRIOR WORK 

Relevant prior work can be divided into two parts: 1) general and related domain 

system architecture and system modeling approaches and methods that look to integrate 

at least some aspect of behavior logic with physical mechanisms and the physical 

embodiment of the system, and 2) specific work related to CPS or MCPS system 

architecture. These approaches will be assessed against the three research questions 

identified previously. 

A. GENERAL SYSTEM ARCHITECTURE APPROACHES AND METHODS 

Since defining the behavior logic and its subsequent integration into the physical 

embodiment of the system has been concept design goal of most any view of systems 

engineering, it is important to understand how this is address or not address in general 

system architecture approaches and methods. These are reviewed in three types: domain 

models, model based system architecture, and architecture and modeling design 

languages. 

1. Domain Models 

As mentioned previously, concept design now requires views into products 

beyond a product hierarchy based on physical assembly and containment relationships. 

Views into the product set in terms of their logical and executable relationships are now 

required. Domain modeling can be described as a way to capture concepts from the 

problem domain and build a common language for communication across a project or 

enterprise relative to those concepts. As such, it not only has embedded architecture 

concepts often in terms of logical layers, entities, and their relationships, but can guide 

the specific formulation of a given project’s architecture. A domain model can be a 

relatively general reference model for a specific focus, such as the open system 

interconnect (OSI) model for network communication (Zimmerman 1980), or can be a 

reference architecture that drives an architecture implementation, such as 4D/RCS to be 

described subsequently. Domain models can also be subdivided in terms of a technical 

domain, such as communications network, computation, agents, software, etc.; or a 
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system application domain, such as manufacturing, military weapon systems, business 

enterprise systems, etc. The focus here is on domain modeling that could be integral or 

otherwise aid in the development of an MIGVS concept architecture. 

Classification and coding (Tatikonda and Wemmerlov 1992) is “a methodology 

which organizes entities into groups (classification)” with codes to “facilitate information 

retrieval” or to otherwise manage information about those entities. Relative to 

manufacturing, it is one way to implement “group technology” where the entities can be 

“parts, assemblies, process plans, tools, instructions, etc.”  Similar classification schema 

are used to organize domain “parts” for a variety of purposes. The PWBS portions of 

MIL-STD-881C essentially forms a component classification schema for all defense 

material systems that can be used for engineering, cost analysis and linked to 3D CAD. In 

similar fashion, automotive firms, such as Ford Motor Company’s Corporate Product 

System Classification (CPSC) codes, use a classification schema to support their entire 

system life cycle (Riff 2010), to include aftermarket support, via their product life cycle 

management (PLM) system. When applied to a conceptual design phase, these types of 

schema can be considered to be a form of domain modeling that supports 

conceptualization of the system; a way to organize and structure the domain logic that 

includes a common language for that logic. These types of approaches apply better to the 

physical mechanical portions of the systems, less so to cyber components, particular 

those above control systems that can be directly related to the mechanical systems that 

they control. 

As in concept design for product development, domain modeling in software 

engineering is a way to capture concepts of the problem domain as regards software. It 

can be applied to business process modeling for service oriented development, real-world 

objects in OOAD, or to any domain that the software is meant to address (Evans 2004). 

However, software domain modeling is more focused on software engineering techniques 

for model creation during a project or on some form of software product line engineering 

for an enterprise, not on the specific generation of a reusable application structure or on 

the software product line itself, though within a given company, there are apparently 

many examples of product line software (SEI 2016). They are primarily focused on 
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interoperability and composability of components to improve software design and 

development and less on early concept modeling and trade space support. 

Fundamental techniques for domain classification can range from a simple 

taxonomy to a machine readable formal ontology. Taxonomies typically organize objects 

hierarchically in a tree structure and can have generalization/specialization and 

parent/child relationships and have provide useful for developing domain vocabularies 

and organizing domain entities from at least one aspect or view. Ontologies can include 

taxonomic relationships but also permit other types of relationships to address multiple 

aspects and have a greater emphasis on formal specification. Modeling complex 

engineered systems do not lend themselves to classification in a single hierarchy. In 

OOAD methods (Booch et al., 2007), “large application discrete systems” relative to the 

software only, have both “is part of” and “is type of” hierarchical relationships. The 

MIGVS domain with multiple forms of logic to include discrete software plus a physical 

dimension cannot be captured in a single hierarchy. It is possible that a MIGVS domain 

ontology (Semy, Pulvermacher, and Orbst 2004) could provide the necessary structure 

and semantics for a classification schema. An example of a domain ontology as a 

category of ontology is illustrated in Figure 8. The general idea is that an upper ontology 

can be used to define basic concepts about the world that can then be used to build a 

domain ontology, perhaps through one or more intermediate ontologies. Any given 

domain ontology ideally could be accessed by reasoning agents over the semantic web 

(Ding et al. 2005). Given the lack of standardization of upper ontologies and the 

difficulty in defining base concepts suitable for all domains, this approach at best is more 

notionally than formally linked, with the possible exception of biomedical domain (Smith 

et al., 2006). 
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Figure 8.  Domain Ontology. Source: Semy, Pulvermacher and Orbst (2004). 

From a SE standpoint, some ontological focus has been placed on SE as a process 

for integration (van Ruijven 2013). An area of limited focus is the development of an 

ontology for systems. The DODAF Version 2.0.2 adapted an enterprise architecture 

ontology as the conceptual basis for its data metamodel (DM2) and architecture 

description. However, it is unlikely that these concepts have the appropriate basis for all 

DOD systems (Giachetti 2015) as opposed to just DOD enterprise systems or those that 

approximate enterprise systems. An MIGVS ontologically is composed of many “base” 

system concepts or classes (i.e., a cyber-physical system, a mobile system, a military 

system, a vehicle system). One would expect that each of these in turn have at least one 

unique concept that distinguishes it from other system types. Unfortunately, no such 

system intermediate ontology exists linked to a higher level ontology of underlying 

concepts fundamental to all systems. 

Software domain concepts like OOAD, model views, separation of concerns, 

crosscutting concerns and constraints, and aspect-oriented programming, are essentially 

techniques to address the multiple types of concept entities and relationships embodied in 

relatively complex software. However, there are often underlying assumptions about the 
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type of software (e.g., discrete software systems), and about the type of underlying 

hardware (e.g., hardware that runs discrete systems software). Some of these approaches 

could be useful to systems like MIGVS, but would need to be extended to cover all forms 

of software and logic, all forms of computational hardware and all the physical 

mechanical hardware relative to the domain. Furthermore, to extend to MIGVS as a 

system application domain would require the use of reference models that can more 

explicitly capture the critical concepts for MIGVS as a domain. Each reference model 

captures critical concepts from a certain aspect, but all has appropriate crosscutting 

relationships to concepts in other reference models in the domain. These reference 

models could also be developed to at leverage fundamental concepts in the appropriate 

upper ontologies. 

2. Model-Based System Architecture 

A MBSE survey (Estefan 2008) provide a comprehensive capture and synopsis as 

well as key references relative to MBSE to include definition, advantages, leading 

methodologies and other related aspects. Most of the MBSE methodologies have either 

an explicit approach to defining a system architecture or an implicit one driven by the 

methodology. They will be reviewed as a body of work focused on system architecture 

and not as a comprehensive review, comparison, and critique of each specific 

methodology. The order of the review is arbitrary and aimed at capturing a superset of all 

critical concepts and features. Duplicative features found in subsequent methodologies 

are not repeated. The superset of concepts and features will then be compared and 

contrasted with the specific objectives and concepts of this research. 

a. INCOSE Object Oriented Systems Engineering Methodology (OOSEM) 

Both a general overview and an application of OOSEM with a focus on 

architecture are shown in Figure 9. Key concepts are: 

(1) Compatibility with object oriented analysis and design (OOAD)—
though a full set of reasons why this compatibility is desired nor the 
original objectives of OOAD are not articulated, many are stated (OMG 
MBSE Wiki 2011) or can be inferred:  use case/scenario analysis to 
establish measures of effectiveness (MOEs), requirements elaboration 
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and measures of performance (MOPs); the concepts of classes, 
inheritance and object models for logical decomposition and white 
box/black box elaboration, and integration with object oriented software. 

(2) Use of general purpose modeling language, particularly UML/SysML—
the advantages of a general purpose modeling language such as SysML 
over a niche language is its potential to capture a wider market and 
therefore offer a more expansive ecosystem (trained users, compatible 
software, tool vendors, etc.) at a lower cost. A general purpose language 
will also be easily understood by not only systems engineers, but other 
engineering disciplines that must work or integrate with a system model.  

(3) Multi-Levels of architecture abstraction—the 2nd pyramid view (House 
and Pearce 2012) in Figure 9 shows multiple view into an architecture 
that progress through an OOSEM process. In addition to the use cases, it 
introduces a functional architecture that can be expressed in non-object 
oriented techniques such as functional flow block diagrams (FFBDs), a 
technology and implementation independent logical architecture, and 
finally a physical architecture that can be arrived through a synthesis and 
trade process. 

 

Figure 9.  INCOSE OOSEM. Source: Estefan (2008) and House and Pearce (2012). 

b. IBM Rational Rhapsody and Rational Harmony for SE 

Since this methodology (Hoffman 2011) is focused on best practices that use 

UML/SysML, it does not differ in principle from INCOSE OOSEM and those objectives. 

However, there are few differences and many things that come to light in this far more 

detailed methodology: 

(1) Integration with real time embedded components—rather than the more 
general objective of integration with software, this methodology has a 
strong focus on embedded components or what it terms as systems that 
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are highly state based. This leads to much more reliance on SysML 
statechart diagrams. 

(2) Behavior diagrams applied to use cases—all three SysML behavior 
diagrams: activity, sequence and statecharts are considered necessary 
because of their different strengths to fully elaborate the internal 
functions and behaviors required of the architecture 

(3) Use cases for “logical decomposition” - decompose functions and 
operations using multiple behavior views, use cases baseline system 
requirements and provide behavior (and therefore also function) 
allocation to architecture components. 

(4) Design concept and design synthesis—The design concept model 
identified the major physical components. Design synthesis adds 
weighting/criteria to the model to evaluate major alternatives.   Once 
major components are defined, detailed design defines ports/interfaces 
and to state behavior to those components. 

(5) Architecture visualization and verification—use the model description 
for visual verification, animation, automatic generation of sequence 
diagrams. 

(6) Conceptualization Modeling—in RUP terms this would be part of 
inception and elaboration as well as iterative development. Key idea 
being that a whole model of the system is created relatively quickly in 
the development and then refined and elaborated toward a design. 

(7) Separation of Concerns/Software Frameworks—though often implied or 
sometimes even explicitly referred to in RUP methodology and 
associated concepts, separation of concerns deserves its own treatment 
since it leads to the concept of views (Goedicke 1990) in software 
frameworks and the ability to “neglect” certain parts of information for 
the sake of other parts of concern to a particular stakeholder or set of 
stakeholders. This in turn promotes the concept of modularity and 
linking the idea of a main function for a given modules. 

c. Jet Propulsion Laboratory (JPL) State Analysis 

The JPL state analysis MBSE approach is based on a “state based control 

architecture” (Wagner et al. 2012) shown in Figure 10. It is perhaps more suited for a 

domain, or at a point in the systems engineering process, where there is more of a priori 

or clear distinction between the behavior system and the overall system 

topology/constraints and physical mechanical systems, and where there is a less complex 
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external environment than that found in the MIGVS domain. However, in terms of early 

or concept design MBSE and behavior modeling, and as a potential companion 

methodology to be used alter in the system design, there are a few key concepts that 

should be considered: 

(1) Systems and software engineering interdependence modeling for 
complex systems—as systems have become more complex, reliance on 
functional based methods and narrative requirements are no longer 
sufficient between system and software design. A model of the behavior 
of the system needs to be defined by systems engineering and used for 
software design. 

(2) Complex or multiple interacting control systems—the domain of interest 
is not simply real time or closed loop control, but multiple interacting 
control systems that need to adapt to goals or user input, uncertainty and 
faults. 

(3) Goal based behavior is integrated into the model—Goals are integrated 
into the model as state intent that reflect what the operator or agent 
would like do as a way of integrating the operator as part of the control 
system. Complex activity can be planned and executed via goal 
networks or re-planned based on goal changes and faults. 

 

Figure 10.  State Based Control Architecture. Source: Wagner et al. (2012). 
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d. Vitech Model Based Systems Engineering (MBSE) Methodology 

The Vitech MBSE methodology (Long and Scott 2011) adds methodology, 

system model, and modeling language features that have not previously been highlighted: 

(1) Multiple layers of system design abstraction—Vitech has its own 
detailed approach to this called STRATATM, but as a general feature it 
can be summarized as follows:  the entire system design is captured at a 
level of abstraction, the abstraction is refined and detailed in stages until 
system design is complete, each stage must satisfy completion criteria 
before proceeding to the next stage. The culmination of each stage 
results in system verification and validation for that stage of abstraction. 

(2) Model the whole system—this requires having a complete model in 
terms of depth and breadth, behavior (time independent and dependent) 
and structure, and boundary conditions. It is more than a sum of views 
but an integrated whole at successive levels of detail as the design 
progresses. 

(3) Model system context—a system’s functions and interfaces cannot be 
fully understood without understanding their interactions with the 
external environment. This in turn requires a specific focus and explicit 
rationalization of the system boundary. 

e. Dori Object-Process Methodology (OPM) 

The “integrated process and object” approach in OPM (Dori 2014) defines a 

formal relationship between functions/processes and objects into a single diagram to 

promote more integrated reasoning that requires less generation of diagram types 

compared to multiple views. It creates bridge between structured methods with object-

oriented methods. Dynamic behavior of objects are reflected by an object state change 

driven by processes. 

f. Integrated Systems Engineering (ISE) and Process Pipelines in Object 
Oriented Architecture (PPOOA) 

The ISE PPOOA (Sanchez 2012) approach combines “classical” engineering 

approaches with model based approaches, particularly at the systems engineering level. 

However, it does add some unique concepts for a more complete model based approach 

not covered yet. 
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(1) Operational Concept—this is an abstract model of the operations of a 
system. A scenario than is a particular path through this concept for a 
given set of conditions 

(2) Capability—the system’s ability to perform an effect. Scenarios then are 
transformed into a set of system capabilities 

(3) Quality Attributes/Constraints—constrain the system architecture 
relative to meeting its functions or performing its capabilities 

(4) Early concurrency modeling—for software intensive mechatronic based 
systems it is important not to just establish the logical relationships and 
collaboration in the object model, but to model the concurrency to drive 
out timing constraints. 

Taken as a whole, the MBSE methodologies reviewed provide a superset of 

concepts that need to be considered in the development of a model based MIGVS concept 

architecture. However, even taken as whole, they do not provide the concepts and 

features necessary to meet the objectives of this research. Particular areas of note are as 

follows: 

a. Object oriented modeling of a system—As noted in Figure 9, the OOSEM 

methodology views the “logical architecture” as an abstraction of the “physical 

architecture.” This is a different view of the relationship between logical and physical 

from software OOAD (Booch et al. 2007) and the software “4+1” model (Kruchten 

2004). The logical view enables a relatively granular view into software components 

based on how they interact, not how they are assembled. The equivalent of software 

physical assembly of those same components is provided in another view, referred to as 

the physical view in Figure 3. As such, they provide different views or abstractions of the 

same “physical components,” but the logical view is not an abstraction of the physical 

view or deployment view. Several of the other methodologies do not as explicitly model 

a logical architecture, but seem to infer a similar view. OPM and ISE POOPA seek to 

combine structured and object oriented approaches, with the former citing integrated 

reasoning of process and objects, but that integrated reasoning can be provided by having 

two views into the same components as practiced in the aforementioned software 

approaches. The objects need to encompass more than software however, the objects 
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must also consist of computational hardware, physical-mechanical components, sensors, 

etc. 

b. Assessing attributes that impact behavior—A focus of ISE POOPA is 

quality attributes or constraints and early concurrency modeling for mechatronic-based 

systems, which can be considered a cyber-physical system or least a pre-cursor thereof. 

These attributes from a system standpoint can be considered in two varieties: physical 

attributes and behavior attributes. The physical attributes, such as weight and volume, are 

best addressed in physical views of the architecture. Here again, as practiced in software 

OOAD, there is an object-oriented view that can be used to address behavior attributes 

such as timing, often referred to as the “process view.”   The executable view model 

provides that view at a system level of abstraction. The overarching multi-view model 

provides integrated reasoning of both behavior and physical attributes through different 

views of the same components.   It is not clear how such reasoning would take place with 

any of the other MBSE approaches. 

c. Use cases and intelligent operation—The concept of a use case and a user 

leads to some confusion as a system acquires more endemic intelligence. This is best 

illustrated for a system facilitating a business transaction, such as an automatic teller 

machine (ATM). If the ATM was only partially automated and still required a teller to 

help it function, the teller is using the machine to facilitate the customer’s objective. In 

that sense the teller is operating and the customer is using. The teller is required because 

their intelligent capability was not fully incorporated into the system design. To consider 

the teller as an actor in a use case distinct from the system and as an a priori consideration 

in the design, is to arbitrarily limit the design and confuse the purpose of the system 

which is to provide a transaction for a customer. To not model the teller’s behavior in any 

way and commit to full automation is to arbitrarily limit the system alternatives and to 

lose valuable insight into needed behavior. The use case of a customer is relatively 

enduring and distinct from the cases involved in the operation and maintenance of the 

system, which should be trade space and concept design dependent. 

d. Intelligent behavior modeling—none of the MBSE methodologies 

explicitly model intelligent operation behavior. The JPL SA does provide a mechanisms 
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for goals, but they seem to be human provided and managed, not a way for the system to 

operate intelligently. The focus of several methodologies seems to be more on a control 

system and the thing being controlled, not on intelligently operating to goals and 

interpreting the external environment as required. The concept of an agent enables both 

intelligent behavior modeling and interaction of with control system objects which can 

then interact with physical-mechanical systems. The operator can be modeled as part of 

the system and the “customer” modeled external to the system or as part of the context. 

For a MIGVS, the “customer” is not always a willing participant in the transaction (e.g., 

an enemy vehicle hit with a large caliber round). The effects or goals can reflect a change 

of state in the external environment. The external environment or context and its 

interaction with the system’s intelligent behavior, brings an increased focus and emphasis 

on modeling that context. The current MBSE methodologies do not explicitly model 

intelligent behavior and its interaction with context modeling. 

3. Architecture and Modeling Design Languages 

MBSE/MBE approaches require that system design and system conceptualization 

should be supported by models. As indicated previously, 3D CAD models support the 

physical architecture conceptualization and embodiment design, with focus on geometric 

and some other physical attributes and relationships. As a descriptive design language, 

3D CAD provides little support to understand and capture the attributes and relationships 

of objects as they impact behavior. These attributes and relationships require a different 

type of design language, yet can still integrate with 3D CAD for overall system 

conceptualization and embodiment design. Three such design languages are the Object 

Management Group’s System Modeling Language (SysMLTM), the Society of 

Automotive Engineers (SAE) Architecture and Analysis Design Language (AADL), and 

the Modelica Association’s Modelica®. These design languages will be reviewed only 

for how their most basic underlying architecture concepts of structure, behavior and 

interconnection, support MIGVS conceptualization and embodiment design, not on their 

overall efficacy to support system engineering and product development. 
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All three provide constructs for representing behavior, structure and 

interconnection between structural elements. SysML, as an extension of the Unified 

Modeling Language (UML), provide a form of object oriented structure called blocks that 

can have “is a type of” and “is a part of” relationships. Native property types supported in 

the language are biased toward viewing the blocks as hardware, but anything in SysML 

can be typed as a block, including the interconnection mechanisms. It provides high level 

behavior description in terms of use case, activity and sequence diagrams. Modelica 

(Fritzson 2012), also provides an object oriented, structure, with a focus toward 

hierarchical physical decomposition covering multiple domains (e.g., electrical, 

mechanical, hydraulic). The interface classes are also focused on these physical domains 

via types of energy. Critical to the approach is to link the structure to mathematical 

equations at the leaf level for execution. Though it provides support to event or discrete 

time, beyond control systems, it does not attempt to address high level behavior and 

software structure. It does have a UML profile called ModelicaML that allows Modelica 

constructs to be represented in UML/SysML. 

AADL, as shown in Figure 11 (Hudak and Feiler 2007), is also focused on the 

“lower end” of the system architecture, but focused more extensively on the 

computational architecture and behavior of the system. As such, it models both the 

software and computation in connection with physical system components at a level of 

abstraction above design. Going counterclockwise from the upper right of Figure 11, its 

view of system architecture is one of a set of control systems interacting with a set of 

physical devices. Each control system can be further decomposed and the behavior of the 

software in its computation execution can be modeled and examined. The ports shown in 

Figure 11 are actually groups of logical interfaces that can be elaborated and/or 

decomposed.   Software can be modeled as threads and latency examined through the 

processing, memory and bus interconnects. Though there is the ability to model software, 

computation hardware, and physical mechanical components, like Modelica there is no 

facility to address higher levels of behavior such as those that might embodied in discrete 

software. 
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Figure 11.  AADL Cruise Control System Hierarchy. Source: Hudak and Feiler (2007). 

Similar to Modelica, there has been some work to look at integration of AADL 

with SysML (Behjati et al. 2011). There is also effort at improving the link (Espinoza et 

al. 2009) between SysML and a UML 2 Profile known as Modeling and Analysis Real-

Time and Embedded Systems (MARTE). This along with the Modelica integration work 

identified above indicates that SysML is best suited at the higher levels of abstraction and 

at higher levels of a behavior hierarchy. AADL and Modelica then are perhaps better 

suited at lower levels of abstraction and of the behavior hierarchy. This in turn suggests 

that at the level of system concept design, SysML would be better suited to capturing and 

analyzing the system architecture relative to major trade space analysis. Once the 

computation architecture and control elements are defined, the detailing of the interfaces 

for the embodiment design as well as preliminary design of the configuration items, 

might be better supported by a variety of languages, such as AADL or Modelica and 

perhaps other design languages, such as those for software design. Alternatively, 

depending on project needs, the SysML model could be further elaborated to achieve the 

same objective and then AADL or Modelica employed at the level of product architecture 

and design. Regardless, for SysML to integrate with lower level architecture or design 

models, it must provide a suitable overlap of information. This reinforces the need to 

model both high level behavior with lower level real time and physical mechanical 
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behavior as interacting objects at a system level of abstraction. If this capability is not 

built into native modeling language, it must be created a specialization of more general 

methods. 

B. CPS SYSTEM ARCHITECTURE 

A MIGVS has been evolving toward being an overall CPS (i.e., an increasingly 

level of computational control over its physical processes). A fully autonomous ground 

vehicle would in fact need a base CPS layer in order to realize the higher levels of 

intelligent behavior required for autonomy. As such, system architecture and modeling 

approaches for systems that are “CPS-like” will need to be reviewed in addition to those 

approaches for systems that are explicitly identified as CPS. 

1. “CPS-Like” Engineering, Architecture and Modeling 

The emergence of CPS systems did not wait for the term cyber-physical to be 

defined. Several types of systems have been described by terms that are essentially CPS 

or have significant overlap with CPS features. These include systems described as 

intelligent, mechatronic, agent based, multi-agent, heterogeneous, autonomous and 

robotic. Systems are also described as combinations of these terms. Increasingly, 

emerging research in similar areas are being described as CPS or at least as relating to a 

particular problem confronted by CPS. Research in these areas that are most relevant to 

the MIGVS architecture conceptualization will be reviewed. 

The 4D/Real-time Control System (RCS) reference model architecture (Albus and 

Meyestel 2001) models a CPS in general and an MIGVS in particular. The 4D refers to 

the four dimensions of intelligence defined as Sensory Processing, World Modeling, 

Value Judgment and Behavior Generation that are embodied within an RCS 

computational node (Albus 2002) as shown in Figure 12. These nodes are arranged in a 

hierarchical control structure that can represent a vehicle system and military unit as 

shown in Figure 13. Additionally, there is a companion methodology for capturing 

knowledge and representing it within 4D/RCS shown in Figure 14. The 4D/RCS 

approach addresses many important concepts for a MIGVS which are briefly summarized 

as follows: 
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(1) Multiple forms of behavior logic are captured. It include basic feedback 
control, intelligent control, and task-oriented behavior. 

(2) Integration of computational or cyber behavior with physical 
mechanisms. Systems can be formed by scaling up from the control of 
physical systems to the highest level mission behavior and include 
timing constraints. 

(3) Repeatable methodology for assessing the computational needs. 
Operational tasks can be captured from basic doctrine and related to 
computational nodes and then mapped to system behaviors. 

 

Figure 12.  4D/RCS Computational Node. Source: Albus (2002). 

 

Figure 13.  RCS Based Notional Military System and Unit Structure. 
Source: Albus (2002). 
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Figure 14.  RCS Methodology for Knowledge Capture and Representation. 
Source: Albus and Barbera (2004). 

As a reference model architecture, 4D/RCS is a blueprint for the computational 

architecture design. It does not have the scope or the necessary abstractions to 

conceptualize an MIGVS system architecture. The overarching system is not addressed 

so it does not enable the necessary trade space to determine the optimum system concept 

in terms of cost and operational effectiveness. Similarly to some of the MBSA 

architectures within the MBSE methodologies and the architecture design languages, the 

4D/RCS reference model architecture could be applied to system embodiment design of 

the computational architecture once the system has been conceptualized and major 

configuration items identified, particular if the concept decision identified an autonomous 

system solution, determined why an autonomous solution achieved optimum mission 

effectiveness, and determined that a 4D/RCS based implementation was the most effect 

approach for realizing the systems computational architecture. 

4D/RCS can also be described as an agent based or multi-agent system reference 

model architecture. Each RCS computational node represents a certain type of agent. In 

software agent terms (Mayk and Regli 2006), multi-agent systems (MAS) “incorporate 
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several agents where the goals of the agent system are achieved through the interaction of 

the individual agents,” and a MAS reference architecture is one of many possible 

derivations from an MAS agent reference model and can guide the development of many 

MAS designs. Depending on the level of abstraction, agents can be considered almost 

identical to objects or quite distinct. However, even at the low abstraction level of 

software programming, agent oriented programming (AOP) can be defined to be a 

“specialization” (Shoham 1993) of object oriented programming (OOP). At the level of 

software design language the differences are less pronounced. Agent modeling (Bergenti 

and Poggi 2000) and interactions (Regli et al. 2014) have been introduced into UML for 

example. At the even higher abstraction level of concept architecture, differences 

between agents and other objects should be even less pronounced 

Beyond agent-oriented software engineering and agent-oriented programming 

languages alluded to above, there are also high level agent-based methodologies (Tveit 

2001). Of particular interest is Multiagent Systems Engineering (MaSE) (Deloach et al. 

2001) with its link to architecture and “system design” as shown in Figure 15. Of 

particular note is its use of goals in lieu of or at least one type of requirements and the use 

of roles to structure tasks and “agent classes.”  The latter is useful to mitigate differences 

in agent objects and other “system objects.”  As shown in the review of architecture 

design languages and in OOAD, objects can be a physical-mechanical mechanism, a 

computer, a control system, a segment of code, etc. They all represent some physical or 

“real-world thing” if we adopt the OOAD view that software has a “physical” realization 

in code, programs, executables, assemblies, etc. For an “agent object,” its physical 

realization can be software code and perhaps sensors and actuators, but it can also be a 

human operator when the entire system is considered instead of the software only. More 

definitively, it can be an “instance” of a given human operator performing a role. 

Whether assigned to software and machine or to a “human instance,” agents cooperated 

together to achieve goals, which is a different and necessary augment to the more 

standard view of functions and requirements. 

“An intelligent mechatronic system is capable of achieving given goals under 

conditions of uncertainty” (Rzevski 2003), as compared to an automated mechatronic 
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system which self-regulates to predictable changes in the environment. As such, the 

mechatronic system domain seeks to leverage architecture techniques already discussed 

like multi-agents, architecture design languages etc. However, it does bring a unique 

perspective on system concept design as a necessary first step to link to multiple design 

disciplines and integration with MBSE. A specific approach to model based 

(Thramboulidis 2010) mechatronic system concept design is shown in Figure 16. Similar 

to AADL, it defines mechatronic components (MTCs) that encompass electronics, 

software and mechanics. These component areas with their specific domain model are 

then integrated to a system view to form a “SysML 3+1 model.”  System concepts are 

then iterated with component concepts and technology selection until a final system 

architecture is selected. This approach does not address higher level logic and trades 

relative to human task/agent components. Also, though it provides component linkages to 

product tools, it is not clear there is enough fidelity and scope at the system logical 

structure and behavior to fully assess the interdependence between MTCs and address all 

MIGVS component types. 

 

Figure 15.  Multiagent Systems Engineering. Source: Deloach et al. (2001). 
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Figure 16.  Mechatronic System V-Model. Source: Thramboulidis (2010). 

Intelligent manufacturing systems is a domain that has seen a certain evolution 

and variety of techniques in intelligent automation with some recent emergence 

connecting in CPS. A lineage has been identified (Leitao, Marik, and Vrba 2013) linking 

holonic manufacturing systems (HMS) and architectures form the international intelligent 

systems manufacturing (IMS) program, International Electrotechnical Commission (IEC) 

61499 for distributed control, multi-agent systems and standards, service-oriented agents, 

and holonic agents. A holon in this context has been defined (Van Brussel et al. 1998) to 

be an autonomous and cooperating building block of a manufacturing system” where 

holons can be considered whole or part of another holon. Holons “cooperate to achieve a 

goal or objective” within a holarchy that limits their autonomy with cooperative rules. A 

view of holons and their structure from the PROSA HMS architecture is shown in Figure 

17 using UML notation for specialization and aggregation. An HMS is composed of three 

basic holons: order, product and resource. These in turn can each be specialized into 

many types as shown for “Resource Holon.”  The concept of holons naturally lends itself 

to domain modeling, object oriented and multi-agent system concepts. However, whereas 

agents have been successfully deployed in “production planning, scheduling and 

logistics” they have not been successfully deployed in factory automation beyond the 
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laboratory or prototypes. However, again, industrial multi-agent systems are still viewed 

as potentially promising. 

 

Figure 17.  Holonic Building Blocks in Manufacturing Systems. 
Source: Van Brussel et al. (1998). 

The lineage from HMS/IMS to IEC 61499 has met with more factory automation 

success as well as direct CPS linkage. IEC 61499 is meant to define a standard for high 

level control or “distributed intelligence” (Cruz Salazar and Rojas Alvarado 2014) above 

the programmable logic control layer and first emerged as a lower level extension of 

holonic and agent based approaches. The key construct is a functional block (FB) as 

shown in Figure 18. All functional blocks share a flow of events and a flow of data. 

There are basic FBs for general behavior, service interface FBs for network or 

environment interface, and composite FBs that enable composition and scaling of a 

complete system. This approach enables a hardware independent event driven execution 

of lower level control systems. It has also been viewed as competing (Kruger and Basson 

2013) with a MAS approach or as a better way of realizing (Sorouri et al. 2015) agent 

like behavior at the device level. There also seems to be few practical realizations of the 

overall IEC 61499 standard. The simplicity of FBs may lead to a lack of flexibility in 

intra-communication for complex systems or to adapt to changes. 
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Figure 18.  IEC 61499 Functional Blocks. Source: Salazar and Alvarado (2014). 

The FBs facility to link discrete events to continuous time control has led to some 

initial investigation of model integration (Pang et al. 2015) into the Ptolemy II framework 

(Ptolemy II 2014), to include introducing time stamps to FB semantics (Vyatkin et al. 

2015), as a means of “maintaining cyber-physical system properties.”  A higher level 

architecture or “unified system framework” (Lee, Bagheri and Kao 2014) for 

manufacturing systems has been offered that incorporates a cyber-physical layer as one of 

5C shown in Figure 19. The CPS layer is seen as a “central information hub” and a means 

to harness big data enabling high level resiliency goals. This general framework would 

need some implementation detail before it could considered an architecture and it is not 

clear why cognition is considered outside of CPS versus a certain model of computation. 

Though lessons can be learned for the MIGVS domain, the dynamic environment and 

system constraints of mobility will make manufacturing CPS solutions difficult to apply 

directly. 
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Figure 19.  Manufacturing System 5C Architecture. 
Source: Lee, Bagheri, and Kao (2014). 

2. CPS Engineering, Architecture and Modeling 

The morphology of terms in intelligent manufacturing is a clear example that the 

concerns of CPS have been around for some time now, at least for certain domains. For 

MIGVS or intelligent manufacturing systems, CPS emergence has resulted in an 

increased recognition of certain concerns along with new approaches and techniques for 

addressing them. There is a greater recognition of the interdependence of multiple 

technical domains within computational and engineering disciplines as required to 

establish a foundation for CPS. These technical domains include (Baheti and Gill 2011): 

networking, control, software, human interactions, mechanical, electrical and others. A 

CPS survey (Khaitan and McCalley 2015) classified the crosscutting issues into design, 

aspects and applications. Another survey (Gunes et al. 2014) referred to challenges that 

addressed similar issues to aspects. The term quality attributes will be utilized to address 

these similar issues. 

Cyber-physical systems and the Internet of Things (IoT) are sometimes used 

interchangeably. In this research, IoT will be considered as a type or domain of CPS or as 
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an enabler to a type of CPS. The IoT set of concerns overlap with a MIGVS, but each 

have their unique concerns. The unique IoT set of concerns is defined as distributed 

computing utilizing a web or Internet-like protocol, geographic dispersion of devices, 

composability, and large data volumes. A MIGVS is a system that contains a hierarchy of 

networked devices engineered to meet its capabilities within mobility and other 

constraints. Once engineered, it may also then be linked into a larger network with an 

Internet-like protocol as a “thing” within an IoT or an “Internet of systems.” It may also 

expose its devices into other IoT type linkage, such as for maintenance. In this sense, the 

MIGVS is both a CPS and a thing that can participate in a larger CPS, as well as a set of 

things that can participate in multiple other CPS systems. Key distinctions are an internal 

system hierarchy and level of dynamic composition possible. CPS literature that address 

IoT concerns will only be reviewed to the extent it can be applied to MIGVS concerns. 

a. CPS Architecture and Modeling 

CPS design (Khaitan and McCalley 2015) was defined to include several areas. 

The particular area relevant to this research is “architecture and modeling.”  Khaitan and 

McCalley further subdivided this area into “model-driven development,” “meta-

architecture and meta-programming,” “semantics,” and “co-design.”  Properties will be 

discussed as part of attributes. Many of these areas overlap with each other and with 

considerations of attributes and domain applications. Semantics can include both 

behavior and properties. Models and behavior semantics can be intertwined. In addition 

to the IoT and MIGVS distinction, a distinction between concept design and embodiment 

or detailed design will further restrict the literature search. Consideration will be given 

embodiment or detailed design research to the extent that it helps determine what should 

be captured in an informative concept design. 

Much of the model-driven development survey (Khaitan and McCalley 2015) 

included research and development focused on the concerns of IoT. One architecture 

example (Tan, Varun and Goddard 2009) as shown in Figure 20, highlights both the 

distinctions and the similarities between IoT and MIGVS. Similar to 4D/RCS (Albus and 

Meyestel 2001), it has an optional direct link of sensors or sensor processing, an optional 
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direct link of actor “motes” and control system or behavior generation, and an integrated 

model of the external environment or world. Unlike 4D/RCS, there is a relatively flat 

sensor and control hierarchy, a network and data base server distribution schema, and a 

human operator performing some undefined role. Like 4D/RCS, it classifies events 

relative to the hierarchy and gives them both spatial and temporal properties. However, 

because of its relatively flat hierarchy, it processes events only as symbolic information 

and does not include the iconic information at the layers immediately above the control 

system in 4D/RCS.  

 

Figure 20.  “IoT-like” CPS Architecture. Source: Tan, Varun and Goddard (2009). 



 56 

CPS modeling challenges (Derler, Lee, and Sangiovanni-Vincentelli 2011) can 

also be distinguished by the “joint dynamics of computers, software, networks, and 

physical processes.”  The fundamental modeling challenge is combining the “sequential” 

nature and discrete event based software with continuous physical processes that can 

occur concurrently over time or during execution. A model based design methodology for 

CPS (Jensen, Chang and Lee 2011) has been proffered that makes extensive use of 

simulation for both analysis and verification. This puts the modeling emphasis on 

generating execution models versus descriptive or notational models. This methodology 

rests on two fundamental concepts: platform-based design (PBD) and actor-oriented 

design. 

PBD is utilized to “separate application logic and architecture-specific software 

into modular components” (Jensen, Chang and Lee 2011). A platform is defined 

(Sangiovanni-Vincentelli 2008) as “a library of components that can be assembled to 

generate a design.” As illustrated in Figure 21, a system platform has an application or 

functional space that consists of a set of designs that can be analyzed from the top down 

to select an instance. There is also an architectural space with a stack of platforms each of 

which consists of a set of designs and abstraction isolation between layers of the stack. 

Components in the architecture stack can be selected bottoms up based on rules.   The 

mapping of the application to the architecture occurs via an Application Program 

Interface. One goal of this approach is understand and distinguish the functionality from 

the hardware implementation to achieve greater reuse. 
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Figure 21.  Platform-Based Design. Source: Sangiovanni-Vincentelli (2008). 

This approach has been adopted and adapted for actor-oriented design of cyber-

physical systems as shown in Figure 22 with an illustration of an architecture platform 

stack. A key problem for CPS is that the abstraction layers have “failed” (Lee 2008) to 

sufficiently isolate and/or express key attributes important to CPS through the layers. 

These attributes include predictability and reliability, particularly as regards timing 

properties. As Lee goes on to explain, at the chip platform components are produced that 

are reliable and predictable. However, the reliability and predictability are not expressed 

to upper layers and each layer increasingly introduces some level of loss. Additionally, 

CPS by their nature are concurrent (Lee 2008), which is another system attribute 

insufficiently addressed via software threading and hardware interrupts managed by the 

operating system. Solutions (Lee 2008) to these challenges can occur from the bottom up, 

but would require a significant modification to computer architecture and software 

practice, or can occur from the top down where “programs” are replaced by “models” of 

the system behavior and software “synthesized” from those models. The latter is 

accomplished via actor-oriented models. 
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Figure 22.  Computing Abstraction Layers. Source: Lee (2008). 

An actor as a model of computation (Hewitt 1977) was first postulated by Carl 

Hewitt and formalized by Gul Agha (Agha 1986). In general, an actor (Hewitt 1977) 

communicates asynchronously and concurrently with other actors only through messages 

and has internal behavior and local state (i.e., does not share a global state). This makes 

the actor and inherent concurrent model of computation (MoC), as opposed to a Turing 

machine which is formulated as a single device acting on a sequence of discrete inputs. 

The Turing machine can be considered a specialization (Hewitt 1977) of the actor model. 

The actor model has been adapted for application to CPS and distinguished from other 

languages and methodologies (Lee and Neuendorffer 2004), particularly OOAD, as 

follows: 

(1) Actors communicate (Lee 2003) with other actors in a model via ports 
and channels and have fixed parameters that configure its operation. A 
model of an actor is a hierarchical abstraction of the actor as shown in 
Figure 23. The model is an actor itself and is composed of actors. 
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(2) The model hierarchy (Lee 2003) has subclasses that inherit actors, ports 
and parameters of classes. 

(3) Ptolemy II (Ptolemy II 2014) is a modeling and simulation tool based on 
the actor model. A “Director” in determines the MoC to include the 
communication mechanism and determines when to execute.   

(4) Simulink and LabVIEW can be considered domain specific actor 
modeling languages. Simulink has a continuous-time semantic MoC and 
LabVIEW a dataflow semantic MoC. 

(5) Software objects in OOAD invoke a method (Lee 2003) in a call/return 
sequence which requires a transfer of control. As Lee explains, this leads 
to “frail” composition where new components can break interactions and 
issues of managing threads of control such as deadlocks. 

(6) SysML blocks linked via ports in internal block diagrams are “closely 
related” to actors (Ptolemy II 2014) but reflects a notational standard and 
do not unambiguously define behavior semantics. 

(7) Actor models have abstract behavior types and exhibit behavior 
polymorphism (Lee 2003) as opposed OOAD object inheritance and 
abstract data types. The behavior is determined by the MoCs. The 
various MoCs supported by Ptolemy II are shown in Figure 24. Note that 
the actor model could implement a MoC of sequential untimed threads, 
but only as a deliberated design decision. 

 

Figure 23.  Actor Model and Abstraction Hierarchy. Source: Lee (2003). 
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Figure 24.  Ptolemy II Models of Computation. Source: Ptolemy II (2014). 

The actor model shows much potential to support cyber-physical systems design, 

particularly if the “computational” model can be generalized to all types of execution so 

as to fully integrate physical non-computational components. However, there are not 

many examples of this, particularly for large scale systems. For large scale systems, it is 

not clear that reasoning about behaviors as actors is better or more intuitive than 

reasoning objects as things. These systems could have a hierarchy of behaviors with a 

hierarchy of networks and control. Higher level behaviors are managed as workflows via 

a graphical user interface (GUI) (Altintas et al. 2004) in Kepler as a companion to 

Ptolemy II. The reuse of both workflow and low level “task behaviors” that go on top the 

“architecture stack” is also unproven. It also seems to be more suitable for embodiment 

and detailed design than concept design which needs a more unifying principle and 

language across multiple engineering disciplines. Finally, it is not clear how agents or 

“context aware actors” would be accommodated and whether a unique MoC 

implementation or base behavior class would be required. 

There are other efforts utilizing actor models. These include integration of a 

network simulator with Modelica (Al-Hammouri 2012), and object-oriented petri nets 
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(Ma, Fu, and Yu 2012). Modelica as an equation constraint language and petri nets 

constitute a singular MoC. The concerns of the Ptolemy II would apply similarly to these 

efforts or MoCs. However, they might find a niche as a more detailed design tool or as an 

analytical tool. It should also be noted that 4D/RCS by these definitions would be 

considered an actor model. 

A meta-architecture approach (Rhajans et al.) with support from a general purpose 

architecture description language (ADL) called Acme (Garlan, Monroe, and Wile 2000) 

was defined to assess alternative architectures. An “architecture style” was created in 

AcmeStudio (Schmerl and Garlan 2004) utilizing “open and interconnected systems” 

concepts (Willems 2007) to include physical elements. Very broadly, Acme was designed 

to be a component based software ADL with multiple forms of connectors/interactions. 

One of its objections to OOAD is that objects have only one type of interconnection—

”method invocation.”  It includes “architecture style” as one of its key ontological 

concepts to define a “vocabulary” that links system “families” together. For instance, a 

client-server architecture would be considered an architecture style. “Open and 

interconnected systems” concepts seemingly extend the Acme software-based 

components and connectors to include physical elements. 

An instance of the architectural style is considered a base architecture (Rajhans et 

al. 2014). A base architecture for a collision avoidance system is shown in Figure 25. It is 

composed of multiple component types with multiple connector types appropriate to the 

connector per the specified architectural style. Multiple views can be specified relative to 

this base architecture to address various concerns. Architecture views shown (Rajhans et 

al. 2014) included verification for consistency assessment and analysis for “quality 

attribute” and trades assessment. This multi-view approach is considered an advantage 

(Rajhans et al. 2014) over multi-model approaches such as Ptolemy II. Disadvantages 

could be considered to be ecosystem support for a unique modeling language or 

“unifying framework” and CPS systems that might also include more “architectural 

styles” yet considered, such as large discrete event software and agents found in MIGVS. 
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Figure 25.  Base Architecture for Collision Avoidance System. 
Source: Rajhans et al. (2014). 

Unique CPS modeling languages need a way to define components and 

relationships. A semantic framework for MBSE (Delgoshaei, Austin, and Pertzborn 

2014) uses a unique scripting language to link software and physical components, 

networks to model component relationships and can provide linkage with both to 

requirements via a semantic structure at multiple levels of hierarchy. This enables an 

integrated assessment of design concepts to satisfy requirements. It is not clear how well 

this support human interpretation from multiple disciplines is supported, how well 

intelligent components are addressed, or how well it addresses the interdependence of 

requirements 

CyPhyML has a concept of a “design space” (Neema, Scott, and Bapty 2015) 

with multiple component alternatives. It also allows multiple domain models to define 

components and other aspects of a more detailed meta-model. The DARPA Advanced 

Vehicle Make (AVM) Program has defined a ground vehicle ontology and has looked at 

how the basic concepts could be extended (Lynch et al. 2016) to other CPS domains. This 

effort specifically aids the concept formulation and early systems engineering trade 

assessment. It does not appear to address higher level behaviors and associated 
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components nor does it enable object-oriented definition of discrete event software. 

These could presumably be added to the ontology, but it is not clear what in the 

“toolchain” is also required and how these unique environments are to be obtained and 

supported. Certain ontological structures could be readily established, but defining many 

types of relationships for a given domain prior to a development, may prove to be more 

difficult and time-consuming. 

Extensions and profiles to more general purpose modeling languages tend to 

apply to the IoT type of CPS domain and their applications. A set of extensions to 

address CPS “process” have been proposed to the Business Process Modeling Notation 

(BPMN) 2.0 standard, referred to as “BPMN4CPS” (Graja et al. 2016). A CPS domain 

specific modeling language (DSML) (Aziz, Wagar, and Rashid 2016) has been proposed 

in terms of a meta-model implemented as a UML profile that enable its use with service-

oriented computing. Another effort proposes a UML profile using a goal-oriented 

approach (Magureanu et al. 2010) “to handle the complexity of distributed applications 

and applies it to a gas distribution case study. A “cognitive architecture for IoT” 

(Sasidharan et al. 2014), to “conceal technological heterogeneity and provide services.”  

This framework has a virtual object layer to enable lookup and registration of objects to 

support service discovery. A shared ontology and a Semantic Big Data Historian (SBDH) 

(Jirkovsky, Obitko, and Marik 2017) has been proposed to address and mitigate issue 

associated with semantic data heterogeneity, considered critical for Industry 4.0 success. 

b. Quality Attributes 

To understand attributes in the context of the overall CPS literature, requires some 

definitions. Attributes can be defined (Albus and Meyestel 2001) as “properties of an 

entity” that are typically measurable or as a characteristic of a person or thing. Per Albus 

and Meyestel, a characteristic can also be a behavior. Attributes that are measurable have 

values that may or may not vary. Albus and Meyestel further define a state as a condition 

or set of dynamic properties and a goal as a desired state of the world. It should be noted 

that goal-based agents will alter their behavior based on their belief and their estimate for 

achieving their goal state. 
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Properties can be defined (Garlan, Monroe, and Wile 2000) as “semantic 

information about a system and its components that go beyond structure” and are “extra-

functional.” Presumably then properties include all semantic information except for 

behavior logic. Constraints are “claims” on architectural design that “include allowable 

values on properties, topology, and design vocabulary.”  Structure is defined as the 

components and connectors and their topology or assembly. Structure consists of 

components and connectors, where components are “computational elements” and “data 

stores.” 

In an actor-oriented language (Ptolemy II 2014), the “semantics is largely 

orthogonal to the syntax, and is determined by a model of computation.” Per Merriam-

Webster: Syntax is a connected or orderly system: harmonious arrangement of parts or 

elements and Semantics is the study of meanings. The actor model semantics include the 

behavior logic and other properties that are provided via “parameters.” 

Given the above similar but different views of semantics and properties, 

the term quality attributes will be defined to include all system or entity semantics 

except behavior logic and physical properties. Types of quality attributes include 

(Barbacci et al. 1995): 

(1) Performance 

(2) Latency 

(3) Throughput 

(4) Capacity 

(5) Modes 

(6) Dependability 

(7) Availability 

(8) Reliability 

(9) Maintainability 

(10) Confidentiality 
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(11) Integrity 

(12) Security 

(13) Safety 

More quality attributes can be added to this such as the aforementioned predictability, 

execution time, resiliency, modularity and (O’Brien, Bass, and Merson 2005): 

interoperability, usability, scalability, extensibility, adaptability, and modifiability. Even 

more attributes can be defined, combinations of other attributes can result in new attribute 

terms, and some current terms may be encompassed in combinations of other current 

terms. 

Much of the literature (Khaitan and McCalley 2015) relative to quality attributes 

focuses on the IoT type of systems and for embodiment design, and does not identify any 

new quality attributes with the possible exception of cyber-security, though even that has 

been a concern of “CPS-like” systems. They potentially are a guide to points of emphasis 

and priority of quality attributes for CPS. A few examples include: 

(1) Predictable and Reliable Performance—in particular the need to meet 
deterministic timelines (Derler, Lee, and Sangiovanni-Vincentelli 2011) 
or real time deadlines 

(2) Cyber security—development of a context-dependent “role” security and 
trust model for data sharing (Stumpf, Bures, and Matena 2015) 

(3) Safety—an approach to switching logic to safely manage modes in 
multi-modal systems (Jha et al. 2010) 

(4) Modes—adapting the use of modes (Bures et al., 2016) as a “property” 
of a component in a smart cyber-physical system (Bures et al., 2015) to 
determine the best behavior in response to environmental uncertainty. 

There are numerous other examples for these and other quality attributes. 

However, though they need to be addressed, quality attributes are not a good organizing 

principle for concept design. They are too numerous and somewhat nebulous when 

separated from a particular system or application, and not always measurable. For a 

domain like MIGVS, a certain priority can be achieved. For concept design, the priority 

needs to be those that define the trade space and need to be integrated with critical 
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structure and behavior. Both the system attributes and behavior cannot always be realized 

through allocation of attributes components, but often need to be augmented with 

additional components to meet the system attributes. Examples of this include nuclear 

event detectors and cable lockouts, redundant components, and anti-virus components. 

c. System Applications 

CPS system applications include (NIST 2013) smart: manufacturing, grids and 

utilities, buildings, transportation and mobility, and healthcare. Like with the design 

techniques, most system applications (Khaitan and McCalley 2015) have emphasized the 

IoT concerns. There are a few techniques for modeling local and cooperative behaviors 

(Loos, Platzer, and Nistor 2011) and complex behaviors (Ahmadi et al. 2011) that could 

apply to a MIGVS, but more as a behavior analytic technique than to model the system 

architecture. Direct CPS ground vehicle system applications include electric vehicles, 

autonomy and active safety, but are focused on an aspect of the system architecture and 

its iteration with design than on the overall architecture conceptualization. This includes 

an electrical and electronic (E/E) architecture and powertrain topology multi-layered 

design optimization scheme (Lukasiewycz et al. 2012) and a “functional-level co-design 

methodology” (Wan et al. 2017) to decouple architecture implementation and that 

includes design space exploration. The latter, in theory can scale up to a complete system 

architecture trade space, but reliance on functional and structured methods are likely to 

encounter the same difficulties that software analysis and design encountered as the 

behaviors become more complex, procedurally oriented, and data intensive. A base 

architecture (Rhajans) for cruise control has already been discussed  

A “hierarchical information architecture” (Jobst and Prehofer 2016) to address 

vehicle CPS challenges for vehicles is shown if Figure 26. The intent is to organize 

information flow within, between, and across layers. The layers are spatial, hierarchy of 

control or behavior, and levels of information abstraction. It illustrates that within the 

vehicle and its local behavior, is a complex CPS with a behavior hierarchy including time 

and space relations, similar to 4D/RCS described previously. It also highlights the issue 

of data heterogeneity and interdependence. However, it is not clear how the layers are 
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meant to be integrated with each other and into the overall system architecture and 

design: is it a view, a software architecture, or a design pattern?  Further illustrating the 

data heterogeneity issue relative to complex behavior, is a human interface and data 

fusion architecture (Wagh et al. 2011) that fuses on-board sensed and network obtained 

data to improve the driver’s perception and reaction. It may work quite well in 

implementation, but it is a particular design architecture solution to a wider system 

architecture problem and trade space. 

 

Figure 26.  Hierarchical Information Architecture. Source: Jobst and Prehofer (2016). 

C. SUMMARY 

Most previous architecture and system modeling related research that can apply to 

military ground vehicle systems have not begun to incorporate the research and concepts 

emergent in the CPS domain. The interdependency of the cyber element and physical 

element within military ground vehicle systems has been increasing as had been the cyber 

dimension overall. Specific and formal techniques to address the interdependency, 

particular in concept design and trade space assessment, have not emerged or kept pace 

with advances in physical modeling. Most CPS and CPS-like architecture practice and 

research is focused on support of computational design, a distributed IoT type of system, 

or a particular slice of an application domain logic. Each of these research focus areas 

lack at least one or more dimensions critical to architecting systems in the MCPS and 

MIGVS domains. The critical dimension areas are: concept design, consideration of both 

cyber and physical components within an integrated trade space, intelligent aspects of 

control and behavior, sufficient use of hierarchy to manage complex behavior. 
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A focus on architecture to support CPS computational design is certainly needed. 

However, research in this area does not provide much indication of how it functions 

within a larger system or enterprise, where requirements for the CPS computation design 

originate, and how trade space analysis was conducted for both cyber and physical 

components so as to understand capability relative to cost and other constraints. This type 

of analysis needs to take place in a multi-disciplinary environment and then provide the 

appropriate concept baseline for embodiment and detailed designs. Multiple other types 

of design, such as 3D CAD design, need to be supported from a system concept baseline 

in addition to the computational design. The computational design research needs to be 

understood however to understand how best to inform it from the system concept 

baseline. 

Architecture and modeling research for IoT types of systems mostly assume a 

very distributed network with a plethora of directly controlled devices by Internet 

applications. This in turn assumes a relatively flat control hierarchy. This is contrary to 

some research on smart and/or autonomous systems that utilize several layers of control 

above the direct control of sensors and actuators. The hierarchy of control not only 

reflects a hierarchy of behavior, but of different types of behavior, or at least different 

emphasis of behavior types at the various levels. Some IoT research has addressed some 

high level or relatively intelligent behavior, but it is reflected as workflows or services to 

be managed by humans or in a single application layer. The IoT research also does not 

address all the constraints introduced by a MCPS, though some effort has been focused 

on addressing a dynamic environment or context awareness. These approaches are also 

likely to be limited relative to the most dynamic aspects of the environment if managed 

by a distributed Internet-like network with distributed applications acting as a single layer 

of control. 

Research in the application domains of large non-mobile infrastructures and/or 

controlled external environment do not address the full range and interdependency of 

multiple forms of logic, performance, and constraints identified for the MIGVS domain. 

CPS research for ground vehicles systems that rely on supporting transportation 

infrastructure or niche areas, such as hybrid electrical control design, do not address 
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military unique aspects of the MIGVS domain. These include the operator or intelligent 

interactions and control, the wider range and complexity of the dynamic environment, 

and the range of constraints required for integrated concept design and an integrated trade 

space.  
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III. AGENT AND OBJECT ORIENTED MODEL-BASED 
CONCEPT DESIGN FOR MOBILE CYBER-PHYSICAL SYSTEMS 

The system behavior logic is modeled as a set of abstract classes and objects that 

have an internal behavior and that interact with each other as well as the external 

environment. The higher level system behavior is determined by the object interactions. 

The behavior logic transforms the entire set of system inputs to the entire set of system 

outputs subject to the system and component properties and constrains. A system with 

intelligent behavior is a context aware or smart CPS. It can perceive external events 

through its input, decide which behavior is required, and assess whether its output has 

produced the necessary effect. It can then decide what further action or behavior is 

required and execute that behavior consistent with its design and constraints. As such, 

special emphasis to how the context is modeled and understood by specialized objects, 

called agents, is critical to the system architecture and trade space. 

The following terms and definitions are considered fundamental and critical to 

describing a system architecture and will be utilized throughout: 

(1) System Syntax—a set of components and connectors, their arrangements, 
structural relationships, and their abstractions. A system syntax can have 
multiple types of abstraction for multiple types of arrangement or views. 
For example, a system can have logical abstractions focused on the 
interaction and behavior of components, and physical abstractions 
focused on how the same components are physically assembled. 

(2) Components—are the physical elements of the system to include 
software and hardware. When physical components are realized as a 
particular physical instance of a generalized abstraction, they will be 
referred to as objects. 

(3) Connectors—represent the interactions between components (Garlan, 
Monroe, and Wile 2000) and their abstractions. Connectors may 
represent physical instantiations or logical abstractions not distinctly 
identifiable from the components they are associated with. Connector 
abstractions will be defined as ports. 

(4) Interactions—the exchange of energy, material or information between 
components and the external environment and/or between components 
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themselves. The components associated abstractions can have abstract 
interactions. Interactions are conveyed through connectors or ports. 

(5) System Semantics—is the meaning or purpose of a system and its 
components/connectors beyond its syntax or structure. It consists of 
behavior logic and properties. 

(6) Behavior Logic—a set of interactions of a system or component over 
time. Execution of the logic at a point in time is dependent on the 
specific incoming interaction and the value of the properties at that point 
in time. Behavior relates to a system and component’s purpose or 
functionality. 

(7) Properties—consist of physical attributes and quality attributes that 
typically have values or a range of values. 

(8) Physical Attributes—symbols and their values that pertain to the 
geometry, mass or other physical aspects of a system, component or 
physical connector. 

(9) Quality Attributes (QAs)—non-physical attributes that further specify a 
system, component or connector, their behavior logic and the behavior 
logic’s execution. QAs of focus in this research include performance, 
reliability, information/data and world/goal states. 

(10) Constraints (Garlan, Monroe, and Wile 2000)—”claims” about a system 
or component’s syntax and semantics “that should remain true over 
time.”  “Typical constraints include restrictions on allowable values of 
properties, topology and design vocabulary.” 

The concepts to be discussed are generalized and defined independent of a 

specific modeling language as much as practicable. Key concepts are expressed as 

“reference models” that can be instantiated and elaborated for a given system or project. 

Given the emphasis on modeling and systems, SysML will be utilized where required for 

concepts that have more intricate semantics and syntax, such as objects that have 

generalization and aggregation relationships. This is due more to its ready availability 

than its advantages or disadvantages as a modeling language. 

A. MOBILE CYBER-PHYSICAL SYSTEM LOGICAL STRUCTURE AND 
BEHAVIOR CONCEPTS 

Figure 27 shows the Mobile Cyber-Physical System (MCPS) Architecture 

Concept Data Meta Model (DM2). This model captures the critical concepts and relations 
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required to model the behavior of a MCPS, and is defined so as to enable a direct 

compare and contrast of the DODAF concept DM2 of Figure 4 and its critical concepts. 

 

Figure 27.  MCPS Architecture Data Meta Model 

Figure 27 shows that the world is composed of instances of real-world things or 

entities called objects. These objects have state and can be grouped into a system or into 

the context (i.e., objects that are relevant to but not “part” of a system). System objects 

are performers that have behavior and interact with each other and context objects to 

detect and effect state needed to perform missions and achieve goals. System objects that 

directly detect or effect context state are typed as sensor and actuator objects. They are 

controlled by other system performer objects which include agent performer objects, a 

type of object whose behavior is driven by its current or believed state of the world 

relative to its goals or goal states. Context objects can have intrinsic time-varying 

properties and/or static properties that time-vary relative to an MCPS due to its changing 

physical proximity. Context objects also include Payload and Operating Resource, two 

types of objects that are not “part” of the system, but are at times physically located 

within the system boundary. 
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Comparing the DODAF DM2 model of Figure 4, there is virtually no 

consideration of the context versus an explicit model of the context as means of modeling 

external events and effects that the system must react and act upon as well as track the 

state of context objects. The context is a required as part of the architecture concept data 

model as well as required data used by the system. An organization is potentially just one 

type of object in the context that interacts with the system. Activities and services are 

types of behavior that may or may not be utilized by the system. Rules and conditions can 

be incorporated as mission goals or a kind of limit or tolerance on mission goals. Physical 

location is always important, but geolocation or location referenced to the world may or 

may not be. Information and material are augmented by energy and represent externally 

supplied operating resources to the extent they are of interest to the system and its 

architecture. Material is also a type of Payload. Finally, capabilities are the missions and 

goals that the system performer objects are capable of performing and reflect the desired 

state of a resource, but most distinctly the desired state of the context or its state relative 

to the system. 

1. System Performer Object 

Any component or part of a MCPS can be classified as a performer object. All 

technology can be thought to have an executable (Arthur 2009), even something as 

seemingly static as a bridge or a support beam. An executable is one way to view a 

behavior. Technology is built to a purpose or mission, and if it meets its design semantics 

or purpose, it has executed effectively. A computation or computing technology 

represents only one form of executable. A human operator can also be considered an 

executable. Conversely, things that seemingly represent only an executable, such as 

software, can also be thought of or modeled as a certain form of technology or physical 

entity. Each technology as applied to a system can be viewed as a component at various 

levels of abstraction that have behavior and interactions and particular instances that are 

system objects. System objects can be distinguished by the nature of its executable and 

the nature of its interaction. 
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Figure 28 shows a general model of a system performer object. A system 

performer object is an abstraction of a component that can interact with the external 

environment and/or other system objects via connectors or ports; where the interactions 

involve energy, material or information, where the interactions are directional, and where 

the object has identity, behavior logic and state. The object behavior at this level of 

abstraction is a model of its executable. As such, it can be an abstraction of a software 

object similar to objects in software OOAD except that it does not necessarily invoke a 

method. It can be an abstraction like an actor model communicating with messages 

except the behavior is not necessarily polymorphic, or it can be an abstraction of any 

physical component that interacts via energy or material. The term system object is 

utilized because of its close association with real-world things. 

 

Figure 28.  General System Performer Object Model 

Performer objects can be grouped and arranged in a hierarchy to address 

complexity. This logical object hierarchy, like social hierarchies, are grouped by 

interaction rather than spatial proximity (Simon 1962). System Performer Objects are at 

the top level of this hierarchy and can be recursively decomposed into sub-performer 

objects or even sub-sub-performer objects. As Simon explains, objects within the same 

hierarchical group interact more than objects in different groups. Objects that do not or 

minimally interact with each other would have different “base” system performer objects. 
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The MCPS domain can be divided into two types of sub-performer objects: active and 

resource. These two types of sub-performer objects will aid in creating patterns across 

performer object classes. 

Active performer objects can alter and intelligently assess their impact to the 

context. The impact and sensing of the context is subject to computational control for the 

MCPS domain. The MCPS domain has at least a two level hierarchy of computational 

control: cyber-physical and intelligent. Intelligent control computation can itself has 

multiple levels of logical or cyber hierarchy depending on the complexity of the system. 

Active performer objects are defined as follows:  

(1) External Sensors/Actuators—objects/components that exchange energy, 
material, or signals between the system and the external environment. 
Sensors convert “stimuli” (Poole and Mackworth 2010) from the 
external environment into information and actuators that convert 
information into actions to the external environment, these actions can 
include signal transmission. Similar objects that do not interact with the 
external environment are categorized as part of various system 
resources. 

(2) Direct Sensor/Actuator Control—objects/components that provide direct 
control or first level hierarchical control of external and internal sensor 
and actuator objects/components. This control is based on position 
feedback of the sensor/actuator and is not based on any context 
awareness. Component types include servos, regulators, feedback 
control, etc. Note that external sensors may have direct control that 
includes feedback in addition to its primary purpose of providing 
information about the external environment to higher level performer 
objects. 

(3) Agent Logical Object—an agent as an object/component requires 
extensive discussion and is addressed subsequently. 

Resource objects/components address certain constraints introduced by the 

mobility of an MCPS and/or limitations of engineered systems. Resources must address 

these constraints and provide support to other components that require the resource. The 

types above are consumers of one or more of the resource sub-types. Interactions, 

connectors and ports reflect the types of resource exchanged. Resource objects are 

defined as follows: 
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(1) Physical Structural Support and Protection—objects/components that 
provide primary and secondary structural support to all system 
objects/components as well as protection against the direct effects of the 
external environment. Component types include mounts, brackets, 
glacis, walls, and electronic chassis’ or bays. 

(2) Power and Energy—objects/components that generate, transform, store, 
and/or distribute power or energy to components that consume it and 
that provide the prime automotive force of the mobile system. 

(3) Material Support—objects/components that generate, transform, store or 
distribute material required by other objects/components. Relevant 
material in an MIGVS can include fuel, oil, and ammunition. 

(4) Information/Computation—objects/components that generate, transform, 
store or distribute information required by object/components. 
Component types include computers, computational stacks, application 
software support, networks, and resource access firmware. 

From a behavior logic standpoint, both active and resource object types 

encapsulate a behavior executable that interact logically through ports with each other 

and/or the external environment to comprise the entire system behavior logic. Again, 

even structural objects have a behavior logic, though perhaps not as dynamic as others. 

The logic of a structural support will be determined by its reliability (e.g., working, not 

working, degraded), and could be relatively dynamic if one considers time-dependent 

reliability. All performer objects have measurable behavior based on the time-varying 

change in values of its state attributes. These state attribute values change based on the 

interactions of performer objects with each other and the objects in the context. 

Interaction types are categorized as follows: 

(1) Energy—interactions that provide or dissipate power, generate or absorb 
a force, support an equilibrium or provide a signal. 

(2) Material—interactions that support the exchange of a solid, liquid or 
gas. 

(3) Information—interactions that support the exchange of data, 
information, or knowledge. 

Energy and material interactions between two objects are direct and of the same 

type, though the energy/material may be transformed to a different type by the object for 
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a direct interaction with another object. Information interactions however can be viewed 

as having two types: 

(4) Direct logical interactions this is an abstraction of a direct and same 
type of interactions. Certain objects can transform the information from 
one type to another to facilitate some end objective, such as signal to 
data transformation by a device driver. 

(5) Indirect logical interactions are like representations of information 
indirectly exchanged between a source and a consumer, such as between 
two software applications. 

Objects that exchange information need to support both these types of exchanges. 

2. Context Object 

As indicated in Figure 2, a MCPS interacts directly with its external environment 

through signal, material and/or energy and interacts indirectly through information 

exchange. Consideration of the system, its boundary, and its direct interaction with the 

external environment or its context, is an important and typical consideration within 

systems engineering. However, as indicated in Figure 27, a MCPS with a cyber hierarchy 

that has indirect logical interactions with the Context, understanding and modeling that 

Context takes on much greater importance. How well or whether the correct behavior 

gets executed by a system is dependent on the accuracy of the information relative to the 

context. 

The traditional view in systems engineering is that the system’s context or 

external environment drives system inputs and is subject to system outputs. The systems’ 

behavior logic translates the inputs into outputs. This is still the case for a MCPS, except 

that there is a wider thread of behavior logic the intelligence of the system has to address, 

namely event to effect. Events are a change in world state that can cause the system to 

execute some appropriate behavior when perceived by the system. Effects are a change in 

world state actuated by the system consistent with some goal or purpose. A MCPS must 

detect events and assess the success of failure of “desired” effects in the context or 

external world. A standard control system by itself is not aware of events and effects in 

the context, but rather reacts to an input from with the system, couples it with knowledge 
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of the plant that is controlling, and produces a new output to control the plant. The 

control system is not aware of the effect that the new output has produced. An intelligent 

system, responds to an event in the context and produces an effect in the context and then 

determines whether that effect was satisfactory. 

Defining the world in objects and interactions enable focused reasoning about a 

limited portion of the world state relevant to given problem. It is not practical (Poole and 

Mackworth 2010) to reason about the world in terms of all possible states, there are too 

many. However, the state of the world can be abstracted, particularly for concept design, 

to a set of things or objects, each with a set of attributes, that when defined can be 

considered the relevant state of the world. The first abstraction is to divide the world state 

into the system and its external context. As previously discussed, the system can be 

defined as a set of performer objects, each with a set of attributes. The system’s state is 

the set of objects with all its attributes defined at a given moment in time. 

Correspondingly, the Context can be defined as a set of objects with attributes that 

change state, at least relative to the system. As a domain, there may be set of top level 

classes that an MCPS might always need to address (e.g., terrain). These classes can be 

further decomposed into lower level classes or objects along with lower level but related 

attributes as needed (e.g., roads with lane attribution like marking type, color etc.). 

3. System Connected Object 

A System Connected Object is context object that can be stored, housed and/or 

used within or at the system boundary. There are four types of MCPS System Connected 

Objects: 

a. Operating Resource 

An operating resource is an object that used by the system in its operation. It is 

not a “part” of the system, but is necessary to its operation and the capacity to carry the 

resource is part of the system. There is generally a way to bring an operating resource 

into the vehicle and store until it is needed. It is generated in the context and then 

consumed in use. 
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(1) Physical. Physical abstraction is introduced here so as not to bias the 
solution for MCPS concept design. For example, a gasoline powered 
engine would use material whereas an electric vehicle would use energy. 
This can be abstracted to a Physical object with an attribute of operating 
range until the specific technological approach is selected. 

(2) Material. A material store object, like a material interaction refers to a 
gas, liquid or solid. Examples include fuel, oil, and ammunition. 

(3) Energy. An energy store object is purely an abstraction object and will 
not be elaborated for concept design. Once a technological solution is 
established, the energy object is likely to show up as an attribute of 
another object (e.g., battery charge). 

(4) Information. A Context information object is externally generated 
information provided to the system for its use. Examples include maps, 
precision geolocation, and information about the Context beyond the 
system’s sensors. 

b. Payload 

A Payload Object is defined here as an object that a MCPS carries during or as 

part of its operation and that is not part of the system or in any way consumed by the 

system. 

(1) Person. A person object is a human on-board the system that must be 
physically accommodated or carried aboard the system. 

(2) Operator. Operator(s) must be physical accommodated so as to be 
capable of operating the system. 

(3) Passenger. A person object not directly involved in the operation of the 
system (e.g., infantry squad). 

(4) Cargo. Cargo is an object that the system is specifically designed to 
carry and can be endemic to the system mission (e.g., a dump truck). It 
also includes personal equipment need by any operators or passengers of 
the system. 

(5) Operating Resource Augment. These objects are the same as Operating 
Resource Material Objects (e.g., fuel, oil), but are not part of the 
systems’ design capacity. An example would be extra containers of fuel 
stowed somewhere aboard the system. 
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c. Person/Person Role 

Person Object can both be defined as a payload and in terms of its role in the 

operation of the system. Any operator of the system should have attributes of both these 

classes. However, in the initial concept design of a MCPS, the operator as a person 

should not be presumed but rather included in the trade space for final concept design. 

The person role will be accommodated by agent roles and agent logical objects and 

addressed subsequently. 

d. Tactical Network 

The tactical network is an external object consisting of at least one physical 

channel. An MCPS by definition can be thought to connect to at least one external 

network via an embedded network interface. External networks can control, guide, or 

augment the operation of the system, support system test and diagnostics, and/or support 

system upgrades. 

4. Mission/Tasks/Desired Trajectory/Goals 

A goal is a desired future state of the world (Albus and Meystel 2001). Albus and 

Meystel distinguish between two types of goals relative to behavior: 1) maintain a system 

relative world state over time or 2) achieve a change in that world state. A goal is a 

physical world state or knowledge state to be achieve or maintained for a given time. 

Albus and Meystel further define a reference trajectory as a set of goals along a timeline. 

Here a reference trajectory will be referred to as a desired trajectory and defined as a 

desired path through a given state space beginning with an initial state and culminating in 

an end goal state. A trajectory is any path through a given state space. The state space is 

the set of possible attribute values of a set of one or more System Performer or Context 

objects. A desired trajectory as a minimum has an initial state and an end state, but can 

also reflect multiple interim goals and can be recursively decomposed into low level 

desired trajectories as shown in Figure 29. Goal 1 reflects the initial state and Goal 2 the 

end goal state for the sub-trajectory. 
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Figure 29.  Hierarchy of Goals and Reference Trajectories 

The goal definition for both Achieve and Maintain goals need to be definitively 

specified if the intelligent behavior is to be executed by machine. A goal specification is 

defined as a canonical set of goal measures for a well-specified goal. The a goal is 

specified expressed in terms of four measures and two value functions as shown in Table 

2. Each type of goal has both a time and state target, a time and state tolerance relative to 

the target, and value functions that compute the loss of value as actual time and state 

measures vary from the assigned target. The value functions shown in Table 2 are based 

on a normal probability density function (PDF) for an achieve goal and an exponential 

cumulative distribution function (CDF) for a maintain goal. These distribution functions 

are notional and actual distributions could be defined experimentally and augmented with 

constants. 
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Table 2.   Achieve and Maintain Goal Measures 

Measure Achieve Goal Maintain Goal 
tTar Assigned time to achieve or 

complete 
Assigned time to maintain 

tTol The acceptable variation around 
tTar. 

The acceptable variation around 
tTar. 

fv(t) The value loss around tTar 
computed as 𝑒𝑒(−(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 −
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)2) where tAct is actual 
current or completion time 

The value loss around tTar computed 
as 𝑒𝑒(−�𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
�) where tOutSt and 

tInSt are the total time out of and in 
state, respectively 

sTar Assigned target state measure. Assigned target state measure 
sTol The acceptable variation around 

sTar. 
The acceptable variation around 
sTar. 

fv(s) The value loss around sTar 
computed as 𝑒𝑒(−(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 −
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)2) where sAct is actual 
current or completion state 

The value loss around sTar 
computed as 𝑒𝑒(−�(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠−𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
�) 

where sAct is the average, 
cumulative or current state over a 
maintain time interval 

 
Tolerances can be expressed as state and time variables or as a measure relative to 

a target of one. For complex state variables (e.g., a list with many items), it may be more 

convenient to express the target as a composite value of one with a separate state 

equation comparing the target list to an actual number of items in a distance function. 

Also, a maintain goal may be expressed without a time value since the desired state is to 

be maintained for an indefinite period of time or until the system is commanded to do 

pursue a different goal. However, the time in state versus out of state may impact its 

overall end goal state satisfaction. In this case, the goal is to always maintain with a value 

of one. 

A desired trajectory or behavior with a goal is unlikely to exactly fail or exactly 

succeed. The behavior has a loss of value to the degree that goal state and time targets are 

not met. A behavior in response to a desired trajectory can be deemed a failure by a 



 84 

superior agent based on the loss of value, such as an actual time or state beyond the 

specified tolerance. A decision at that time may be made to proceed with the mission, 

alter the mission, or abort. A deemed failure to meet a goal may require a special 

classification when compared with hardware failures and standard concepts of system 

reliability (e.g., “essential task soft failure”) as compared to an essential function failure. 

From an overall requirements standpoint, goal requirements can be listed as narrative 

with other system functional requirements. The goal requirement narrative would identify 

standard state and time targets, standard state and time tolerances, and ideally include an 

agreed to loss of value function. However, actual failure would be determined 

dynamically based on mission conditions. 

As indicated, a goal can express a desired physical state or a desired knowledge 

state. The goal of certain military missions and tasks is to acquire some state of 

knowledge. Knowledge state is defined as the current state variable values of events and 

situations. An event is defined as a temporal occurrence of interest or discovery of an 

object’s attributes and a situation is defined as “a relationship that exists between entities 

and events in space and time” (Albus and Meystel 2001). For example, an earthquake is 

an event, but someone at the top floor of a twenty story building at the epicenter, is a 

situation. Events themselves can object attributes that are static, but are of temporal 

interest to a system, particularly a MCPS. A knowledge goal is the determination of the 

state; that is, the desired state of knowledge is to know the state rather some particular 

state. The same goal specification measures can be used, though the detailed expression 

calculation may be different. 

A mission reflects the fundamental or overarching purpose of the system. A 

mission is defined as an ordered set of tasks. A task is defined as a set of trajectories. 

Most if not all MCPS are designed to achieve some effect in the environment as its 

overarching purpose and can be considered to be the mission effect desired trajectory as 

its object identity. However, most MCPS also have constraints on safe and reliable 

operation as well as constraints on its operating resource usage. These constraints can be 

defined as desired trajectories over the same mission trajectory timeline as notionally 

shown in Figure 30. The advantage of viewing these explicit desired trajectories relative 
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to the mission is that the goals constraints can be adjusted to reflect different rules and 

conditions. For instance, a critical mission of moving a passenger to a hospital emergency 

room can be weighted more heavily by allowing more leeway to the goal constraints of 

safe operation. The operating resource and operating desired trajectories can be 

generalized as normal or disciplined operation desired trajectory. Many more of these 

types of trajectories could be defined. 

 

Figure 30.  Notional Mission Trajectories Graph 

The system and context or world objects/attributes of the mission and all its 

trajectories reflect the entire world state of interest to the system and can be executed 

concurrently. The trajectories may or may not share world objects of interest or a 

particular subset of the overall state variables. The actual direction of trajectories shown 

in Figure 30 are notional and merely reflect that the state variable change values in a 

particular way of time. Additionally, there is a third type or class of trajectory not shown 

that can be defined as exception handling desired trajectory. These can be explicitly 

defined as abnormal or “non-sunny or rainy day” operation and have goal constraints that 

can be adjusted as needed within design constraints to reflect different rules and 

conditions. For example, an intelligent ground vehicle system needs to detect dynamic 
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obstacles in the context and take proper action. Once a dynamic obstacle has been 

detected, the appropriate action may vary depending on its risk to the overarching 

mission effect. 

Mission composition of mission effect, disciplined operation, and exception 

handling desired trajectories and their goal specification measures, define the measures of 

effectiveness (MOEs) and measures of performance (MOPs) for the system. The 

trajectories can be further typed and decomposed. The corresponding decomposition of 

world objects, state attributes and goals result in a hierarchy of MOE/MOPs. The system 

and context objects can be decomposed as needed along with the corresponding state 

space and be defined as a world state model. The world state model will reflect a set of 

attributed data objects for concept design. The system’s assigned and derived missions 

will selectively reference the data objects from the world state model and constrain their 

attribute values as needed to meet goals. The goals are much like use cases except they 

do not presume an operator and are embedded in the concept design of the system. 

5. Agent Logical Object 

Agent logical objects (ALOs) are system’s objects capable of intelligent behavior. 

An ALO is capable of perceiving its environment and achieving or maintain an effect 

in the environment (Russell and Norvig 2003). Like other system performer objects, 

ALOs have a set of interactions, a behavior logic, and a set of state attributes. Also like 

other performer objects, agents have identity and represent a solution independent 

abstraction of some physical element or technology. In this case, an ALO represents an 

abstraction of intelligent logic that can be realized by person’s brain, application 

software, or a technology like a neural net. It is independent from, but requires 

integration or transformation access (e.g., some direct logical interaction path) to some 

type of compatible computational execution engine framework (e.g., a computer for the 

application software). ALOs can be aggregated along with computers, control systems, 

and sensors/actuators to form embodied physical agents, can be realized as distributed 

software, and/or can be physically realized by a person.  
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As shown in Figure 31, ALOs logically interact via commands and percepts. 

These are indirect logic interactions (e.g., application to application). They logically 

interact only with other ALOs or sensor/actuator controllers and execute within an 

application control hierarchy. They receive commands from “superior” agents or agents 

that are higher in the control hierarchy, and issue or generate commands to subordinate 

agents. Conversely, they issue or generate percepts to superior agents. Each ALO has a 

world state of interest composed of entities/attributes that reflects the world state model 

discussed previously. The current value of the attributes reflects the ALO’s belief state. 

The goal state is composed of a set of constrained values on the world state space ordered 

into trajectories that reflect the assigned and derived missions discussed previously. The 

ALO behavior logic considers the belief state relative to the goals state and takes 

appropriate action. 

 

Figure 31.  Agent Logical Object (ALO) Pattern 

The ALO high level internal behavior is shown in Figure 32. The behavior block 

executes on the data in the goal and world states. The agent behavior processes command 

from the superior agent and generates commands to subordinate agents required to meet 

the command. It receives status back from subordinate agent percepts and provides its 
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collective status up to the superior agent. The superior agent command has an assigned 

mission with a set of trajectories which in turn has a set of goals. The goals constrain a 

set of world state entities to desired values. The ALO updates its world state based on 

subordinate agent percepts and compares it against its overall goal state. Based on the 

delta the agent can decide if any new behavior or subordinate commands need to be 

generated. Regardless, it reports its current state up to the superior agent. If the ALO is 

realized by machine, the world state model and the goal constraints would represent 

logical data stores and would be incorporated into a concept data model for the system.  

 

Figure 32.  ALO Internal Behavior 

The indirect logical control and interaction topological pattern of ALO’s for a 

MCPS is shown in Figure 33. This pattern begins the formulation of each ALO’s identity. 

The general behavior pattern above is repeated for each of the ALOs. The ALO types in 

this hierarchy are defined as follows: 
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(1) Mission Agent (MA)—controls the overall mission or operation of the 
system. It initiates, orchestrates and terminates the top level tasks or 
trajectories. If connected to a larger network or systems of systems it 
will also respond to commands to a superior agent and provide percepts 
to that agent. 

(2) Task Agent—executes the top level task or trajectories. Responds to 
percepts with world state information from one or more detection agents, 
determines an appropriate course of action, and generates a command to 
a single intelligent control agent. 

(3) Detection Agent—interprets world state from data received from sensors 
and sends percepts to its higher level task agent. Detection agents are the 
primary means for directly interpreting information about the state of the 
world. The number of detection agents will correspond to the different 
types of sensors needed to determine various unique aspects of the world 
state. The detection agents control the sensors as required to detect the 
world state. 

(4) Intelligent Control Agent—responds to commands from the task agents 
and issues the necessary set of coordinated commands to the systems 
actuators. This is the primary means to bring about an effect in the 
external environment or change to world state. There is a single ICA to 
insure all control systems receive a coordinated set of inputs. 

 

Figure 33.  Agent Logical Control Hierarchy 
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For a U.S. Army MIGVS, the mission plan is a highly detailed and coordinated a 

priori plan through the entire mission timeline. It has an overarching purpose, but also 

many “disciplined operation” trajectory type tasks or rules as well as belief state 

information about the context. Discipline operations examples include following a route 

plan, maintain situational awareness, and proper communications. Each ALO in the 

hierarchy would have some portion of the mission plan assigned and would also have to 

decompose the plan into sub-trajectories and/or sub-goals. Assuming the plan does not 

change during the mission, the ALO percepts are reporting on the status against their 

portion of the mission plan and the mission ALO reports this back to the unit or task 

force commander. This does require identifying which part of the plan is currently active, 

hence both trajectories and goals can be considered to have a state. 

The task agents, and the detection and intelligent control agents in particular, not 

only have perform as appropriate to the a prior plan, but also have to dynamically plan to 

meet dynamic events. There are two types of dynamic events that must be considered. 

Unplanned events are dynamic events that may interrupt any given desired trajectory, at 

each temporarily. Each ALO must be able to handle a finite set of exceptions to some 

performance standard or goal, and then be able to plan and execute a recovery to its 

original plan or dynamically adjust to a newly assigned desired trajectory or goal 

changes. Unplannable events are dynamic events that do not necessarily interrupt the a 

priori reference trajectory, but cannot practically be planned prior to execution. They are 

dynamically planned during execution and then executed within the desired trajectory 

timeline. Basic vehicle movements for instance cannot be practically planned prior to 

beginning a mission. 

To complete the ALO identity, each ALO must be assigned a person role and a 

place within a top level system performer object. Humans perform multiple roles where 

each role has an overarching purpose. For each given purpose, a human will execute a set 

of behaviors that will at least have some unique aspects to it, though a given behavior can 

correspond to multiple roles. A role is defined as an overarching purpose that has an 

associated set of intelligent behaviors that will execute in response to external events or 

stimuli. A different role may execute behavior differently to the same event or stimuli. A 
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given agent logical object corresponds uniquely to a given role. In terms of component 

realizations, their “physical reality” can correspond to application software or to a kind of 

human instance performing the logic of that role. The sensors and actuators then 

correspond to human parts such as eyes, ears, arms, legs, etc. The agents in the hierarchy 

are defined to a relative granular level in order to detail and organize the application 

hierarchy in a standard and repeatable way and to understand the information 

dependencies. 

Person roles and top level performer objects will be domain dependent. Person 

roles in the MIGVS domain include commander, gunner, driver, and various mission 

specialists. The commander can perform many roles and would be responsible for many 

tasks or desired trajectories as well as the overall mission. The mission agent would be 

assigned a commander person role. The gunner and driver are more specialized. The 

gunner can be related to Lethality as a top level performer object (i.e., it groups all the 

objects required to execute lethality, including an ALO hierarchy with a Gunner Task 

Agent the top of that hierarchy). By definition, a MCPS will have a driver person role 

linked to Mobility has a top level performer object. It will have an ALO hierarchy with a 

Driver Task Agent at the top. 

As mentioned previously, for the logic of an agent to actually execute and interact 

with other agents in a system, an execution means is required in the form of a 

computation (e.g., brain, computer, neural net). Given the nature of a MCPS as described 

herein, a significant portion of the combined set of ALO computation should be assigned 

to a machine/computer. This computation can be described in terms of a “stack” as 

shown in Figure 34. Information flow can be understood to flow both vertically and 

horizontally through and across the stack. “Conceptually, the data moved horizontally 

and vertically is the same” (Shames and Sarrel 2015). As Shames and Sarrel indicate, the 

vertical flow can be thought to be a “transformation” of data or information. The logical 

interactions described thus far, can be thought to flow horizontally in the end-to-end 

execution of a behavior between interacting agents or like objects. This is the desired or 

objective behavior. However, the information flow actually goes through potentially 

many transformations up and down the stack before arriving in the proper form in its 
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destination. This occurs whether an agent has its own computational stack or shares one 

with the other agent. These transformations impact the timing of the end-to-end behavior 

as well as introducing the potential for errors, delays, etc. If standard or common 

information support software to support the ALO is desired, this can add further 

complications to the stack execution.   

 

Figure 34.  An Agent Computational Stack 

A solution independent model would not require much detail relative to how 

specifically the vertical transformations happen. It would require knowledge and 

understanding that the horizontal flow or indirect logical interactions must be supported 

by the vertical transformations and they do not occur instantaneously, without cost or 

without some failure. The ALOs could be thought to “logically” execute on a single stack 

and its physical realization as a single assembly or an assembly for each ALO or 

something in between, would be part of the trade space required to finalize a concept 

design. The key would be to understand the vertical transformation MOPs and their 

relation to the horizontal MOPs and MOEs. By implication, the ALO hierarchy is also a 
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computation hierarchy linking eventually to the physical-mechanical behavior of sensors 

and actuators. 

6. System Behavior Thread 

A system behavior thread is defined as a singular horizontal path of an event, 

input, internal behavior logic, output, and then effect. An event was previously defined as 

a change of state in the external context that results in a system input. An effect was 

previously defined as a change of state in the external context caused by the system 

output. An input is defined as the system import of energy, material or signal/information 

and output is defined by the system export of energy, material or signal/information. The 

internal behavior logic can be as simple as the behavior of a single logical object or as 

complicated as a combinatory set of object behaviors with many object-to-object 

interactions. The system logical behavior is defined as the unconstrained combination of 

all threads. Agent logical object behavior and their interactions comprise the system 

intelligent logical behavior and is the combination of all intelligent behavior threads. 

A system behavior thread is illustrated in Figure 35 for a single task ALO and 

below. The task agent receives a command from the Mission ALO. One or more 

detection agents detect events as state change in the external world or context. A single 

intelligent control agent’s coordinated response through multiple controllers of actuators 

generates an effect or desired state change of the world. This event-effect “control loop” 

can repeat as needed until the desired effect is achieved. As defined previously, agents 

are just one type of system object and agent interactions just one type of interaction. 

ALOs interact with control system objects and they in turn with sensors and actuator 

objects. From a hierarchical behavior control standpoint, agent interactions to 

sensor/actuator control have been defined previously to be indirect logical interactions. 

The control system interactions with sensors and actuators take the form of signal energy. 

The interactions between the sensors/actuators with the world can take the form of energy 

or material, though only energy is shown for simplicity. 
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Figure 35.  System Behavior Thread 

The behavior thread then is that complete horizontal flow of indirect logical 

interactions to signals to events/effects and back again. This is supported at the upper 

levels by the vertical (Shames and Sarrel 2015) flow described previously. Just as the 

vertical flow represents the transformation of information, the horizontal flow represents 

its distribution. The concepts of transformation and distribution can be extended to 

energy and even material interactions. Not shown for simplicity is the control of the 

sensor. The detection agent would execute control commands as needed to get the 

information in a desired condition. 

In summary, an ALO as application logic is similar to an application object as 

practiced in software OOAD and can be compared and contrasted, as shown in Table 3. 
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Table 3.   Software Object and ALO Comparison 

Comparative 
Item 

Software Object 
(Booch et al. 2007) 

ALO 

 
 
 
1 

A function is “an input/output 
mapping as a result of some 
objects behavior. 

A task or intelligent function is an 
event/effect world mapping as a 
result of some ALOs intelligent 
behavior 

 
 
2 

An object “has state, behavior, and 
identity.” 

An ALO has state, intelligent 
behavior, and identity. 
 

 
 

 
 
3 

State is “the cumulative results of 
the behavior of an object” 

State is the desired results or goals 
of the ALO’s behavior relative to 
its current understanding of the 
world. 
 

 
 

 
 
4 

Behavior is “how an object acts 
and reacts in terms of state change 
and message passing” 

Intelligent behavior is how an ALO 
acts and reacts in terms of state 
change and message passing 
relative to its goal state 
 

 
 
 

 
 
5 

An operation is “some work that 
an object performs on another in 
order to elicit a reaction …. 
message, method and operation 
are used interchangeably.” 

Message passing consists of 
commands and percepts and do not 
invoke a method, imply a transfer 
or singular thread of control, or 
provide a direct reaction to the 
sender. 

 
 

 
 

6 

State space is “an enumeration of 
all possible states of an object” 

State space is an enumeration of all 
possible world entity attribute 
values of an ALOs world state 
model. 
 

 
 
 
7 

“The role of an object denotes the 
selection of a set of behaviors” 

The role of an ALO denotes a 
unique set of intelligent behaviors 
that form its identity. 
 

 

B. SOLUTION INDEPENDENT MCPS OBJECT ORIENTED BEHAVIOR 
CONCEPT DESIGN 

To sufficiently capture the complexity of the solution independent objects, 

behavior logic, attributes, and interactions, as well as their integration into behavior 

concept design, a modeling language is needed. No modeling language provides the 
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syntax and semantics to directly model agents, components or physical object 

abstractions, physical and computational behavior, and data. SysML is selected as the 

modeling language that can best be leveraged. This is not meant as a modeling tutorial or 

to be an expert application or use of SysML. Key to its use here are the following 

features: 

(1) It is the most commonly used modeling language for systems 
engineering. It is a descriptive visual language that supports certain 
object oriented techniques. 

(2) The concept of a block provides the flexibility to model any structural 
type, to include complex data structures and complex context. It 
supports structural relationships such aggregation/composition, 
generalization/specialization and inheritance. 

(3) It can model a variety of connector and interaction types. Proxy ports 
can be used to represent connector abstractions and then typed by 
interface blocks. It can be used to represent both horizontal and vertical 
interactions. 

(4) General and descriptive modeling behavior techniques that can be 
incorporated into blocks or objects. It will support object oriented 
decomposition from various class types and then definition of behavior 
via leaf level classes or objects. 

1. MCPS Domain Structural Model Concepts 

As shown in the MCPS Architecture DM2 in Figure 27 and with consideration of 

comparison to the DODAF Architecture DM2 of Figure 4, the world can be viewed in 

terms of physical entities or objects and their interactions, as shown in Figure 36. This 

world is modeled structurally as having to two entity types, resource and context. A 

driver is one type of payload that has a person role. An MCPS by definition will have a 

driver person role. The block “Physical” is introduced here as an abstraction for material 

and energy so as not to bias the technological solution that uses the operating resource. 

Material can also be a type of payload. From a system perspective, an organization is part 

of the context. From a MCPS perspective, only organizations that it interacts with are of 

interest. Friendly force is a type of organization that an MCPS interacts with during 

operation. 



 97 

 

Figure 36.  Types of World Entities 

System is a type of resource as defined in the DoDAF DM2. It consists or is 

composed of one or more performer entities. Performer entities have one or more agent 

roles which also have a person role. The SysML notation indicates the “is a type of” 

relation with closed clear arrow. The “is a part of” relation is indicated by an open arrow 

with a diamond block on the other end. In SysML this also implies ownership, though not 

necessarily physical containment. The arrow without the diamond represents a reference 

compositional relationship but not ownership. Since much of the aggregation addressed 

in this approach is logical, the reference relationship will be used since it is not clear what 

logical ownership implies relative to physical ownership. The blocks represent entities 

that are abstractions of something physical. Information, similarly to software, can be 

thought to have a physical realization. A person role can also be considered to have 

physical realization. It could be an instance of a person executing a certain set of behavior 

or the making realization of that set of behavior. 

a. World State and World State Model 

From a MCPS system centric point of view of the world, the concept of a resource 

generally is not a particular useful modeling concept. A system is a resource per the 

DODAF DM2, but also uses resources. From a system centric standpoint, the world can 
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viewed in terms of two top level entities, the system itself and the context as shown in 

Figure 37. As mentioned before, the system has one or more performer entities which 

have one or more agent roles. The context is composed of multiple entity types. Two 

example types discussed so far are the system store and friendly force. The system store 

is an overarching concept for context objects that can be contained within the system 

boundary: person role, operating resource and payload. The friendly force represents 

other systems or organizations that the system interacts with symbiotically; that is, 

entities with which the system interacts to achieve some higher level objectives beyond 

what the system can achieve singularly. The generalized concept of an organization is not 

needed in this approach. 

 

Figure 37.  World State 

Each of these objects or entities have attributes or state variables. The value of an 

object’s attributes at a given point in time reflects the objects state. The set of all possible 

values is the state space. Collectively all the world objects and their attributes comprise 

the world state. The actual state of the world is the ground truth state variable values at a 

given point in time. From the standpoint of systems engineering, the system is designed 
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as needed to appropriately interact with the context. From an agent standpoint, this world 

state needs to be tracked and understood. This representation of the world is defined as 

the world state model and the current value of the object attributes or state variables is the 

belief state. 

b. Context Class 

In addition to system store and friendly force, there are other context entities or 

classes that are relevant to any MCPS and that further define the domain. These are 

shown in Figure 38 arranged in a composition. A common domain context attributes 

could be arranged in a class inheritance model. The inheritance class model would 

identify a sort of “pick list” of top level classes for the composition of the context in a 

given system application. These classes are defined as follows 

(1) System Connected—context object that can be stored, housed and/or 
used within or at the system boundary 

(2) Friendly Force—a context object of another system or organizations that 
the system interacts with in some symbiotic fashion (e.g., two systems 
cooperating to achieve some higher level objectives beyond what the 
system can achieve singularly). 

(3) Terrain—by the definition, the mobility aspect of an MCPS implies that 
the system traverses some sort of terrain (air, ground, water, etc.). This 
terrain can be decomposed or structure into a set of classes with objects 
and attributes.  

(4) Meteorology and Weather—for many MCPS, particularly those that 
traverse the surface of a terrain, the meteorology or weather are a 
distinct aspect of the context that can impact the behavior the system, 
particularly the intelligent aspects of the system that rely on sensor 
understanding of the context. 

(5) Civil—whether expressly designed for civil use or not, most MCPS will 
likely have to consider or interact with civil entities. These objects 
include pedestrians, non-friendly force vehicle systems, cultural features 
and traffic management components. 
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Figure 38.  MCPS Context Classes 

Whether arranged as an inheritance or composition model, the context has to be 

decomposed to some leaf level where objects with attributes can be instanced. System 

store is an example of the next level of decomposition, but is still not at the leaf level. 

A particular decomposition can be better focused for a given MCPS sub-domain 

(e.g., MIGVS). Also, the second level composition of the context can be extended for a 

given sub-domain. For example, top level concepts for a MIGVS context include military 

base and enemy or threat in addition to what is shown in Figure 38. As indicated 

previously, terrain can include roads which can include lanes as shown in the example 

classification of Figure 39. A road is a type of improved surface which a type of a terrain 

“thing” and has at least one notion of a lane which can have lane markings. These lane 

markings then have a set of attributes which can impact how the system behaves. 

Conversely the terrain for a given MCPS can be viewed as being composed of a set of 

improved and unimproved surfaces. 
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Figure 39.  A Terrain Decomposition 

c. System and System Performer Classes 

Systems are composed of system performer objects. As with the context, these 

system performer objects can also be considered domain MCPS classes. These are the top 

level performer classes that are in turn composed of sub-performer classes or objects 

which in turn can be further decomposed. When considering MCPS as a domain, these 

are classes that organize the domain and may have like properties and attributes. When 

considering a specific MCPS, these form logical compositions or aggregations of those 

lower level types. Common MCPS performer classes are defined as follows: 

(1) Mobility—a set of performer objects that provide the prime force that 
enable MCPS movement and the ability to control and support that 
movement as required. 

(2) Tactical Command Control and Communications (TC3)—as indicated 
previously in the context discussion, it is rare for any MCPS to operate 
without some connection and purposeful interaction with other systems. 
These are the set of performer objects that enable and MCPS to 
communicate and exchange information with those systems. 
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(3) System Command Control and Autonomics (SC2A)—regardless how an 
MCPS is physically assembled, it can be viewed logically as a set of 
autonomic objects that transform and distribute power and that control 
signals and information as required to support other performer objects. 
This autonomic system also has objects that manages the transformation 
and distribution. Since the mission agent requires control of this 
autonomic system to best execute, it is included here as well. 

(4) Structure—the system performer classes previously described can be 
decomposed to some component level. To form a system, they must 
physically assembled in some fashion. These are the endo and 
exoskeleton objects of the MCPS. These objects can be considered to 
structurally interact with each other and the components that they 
support. 

(5) Mission or Special—in addition to the common or standard MCPS 
domain classes described above, a given sub-domain of MCPS can 
expect to see some specialized or unique mission purpose that can also 
be logically related as a set of performer objects. 

The intelligent and relatively more active performer objects that are the focus of 

this research have a common set of object types: external sensor/actuators, direct control 

of sensors/actuators and agent logical objects as discussed previously. This is shown as 

an MCPS domain view in Figure 40. Each of these performer classes have operating 

resources subject to capacity constraints and performance attributes subject to design 

constraints. The intelligent control pattern, including task, detection and intelligent 

control agents, is shown for Mobility but can be similarly elaborated for each top level 

performer class. Like the context, these domain classes form the “pick list” from which to 

compose or aggregate objects into systems. Further elaboration can only reasonably be 

done within a given sub-domain (e.g., MIGVS). The objective again is to get to the 

specific leaf level classes and meaningful instances of physical objects within definitive 

attributes. 
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Figure 40.  MCPS Domain Performer Classes 

d. Assigned Mission 

An assigned mission is an externally supplied objective or purpose and is modeled 

as shown in Figure 41. As indicated previously, trajectories include world entities which 

define a state space of interest and goals which define desired values relative that state 

space. As before, there are three types of trajectories: mission effect, discipline and 

exception handling and each desired trajectory has an end state goal that is to be achieved 

or maintained. Military operations generally have a significant planning phase where 

each participating system receive detailed steps or a priori objectives that can be 

synchronized with other systems. The system needs to distinguish between planning to 

achieve a goal versus executing an action that achieves the goal. An Army MIGVS 

mission includes other phases (phC): preparation, execution, and refit. An Assigned 

Mission have an ordered set of tasks (taskOrd), tasks have an ordered set of desired 

trajectories (trajOrdN), and desired trajectories have an order set of goals (goalOrdN). A 

mission state is defined as the last task and trajectory activated and the goal state of any 

other desired trajectories still executing. 
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Figure 41.  Assigned Mission 

Goals then are satisfied not only when they achieve or maintain the correct state 

(satSMOP) relative to the correct time (satTMOP) per the goal specification of Table 2, 

but also when they execute in the correct phase and correct order. The mission state will 

reflect a current phase (phC) and a current desired trajectory order (ordC) that can be 

compared to the phase (phase) and the order number (ordN) of the goal as planned. Goal 

satisfaction (isSat) can be represented in Boolean expressions as follows: 

isSat = {satSMOP} and {satTMOP} and {isActive} 

satSMOP = {current state <= (state target +/- state tolerance)} 

satTMOP = {current time <= (time target +/- time tolerance)} 

isActive = {phC = goalPh} and {ordC = ordN} 

Mathematical expressions in SysML are captured using constraint blocks. As 

shown in Figure 42, constraint blocks are used to capture the expression above and are 

part of a goal. Achieve and maintain goals have some variation in state and time 

expression, so goal is further typed accordingly. Also, since complex state is difficult to 

express mathematically, particularly in a SysML constraint equation, high level 

representation of that state may be used along with value expressions as shown in Figure 

42. For example, given a vehicle following goal target of 40 KPH with a tolerance of +/- 
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2 KPH, can be equivalently expressed as a target value of one with a tolerance of +/- 

0.05. For a knowledge state situation goal, the state measure can be expressed as a 

difference between the set of all possible variables and the values of actual state 

variables.  

 

Figure 42.  Goal Constrains 

Specific goals through the mission and desired trajectory hierarchy are typed as 

achieve or maintain goals, at which point they will inherit the appropriate constraint 

block equations. Since the value equations are notional and time targets and tolerances 

are straightforward, the focus of the modeling and goal constraint equations is on the 

target and actual or current state. Each state expression is unique to given desired 

trajectory and goal and can have many variables. Additionally, for maintain goals, the 

current state needs to be assessed throughout execution and will be an in-progress state 

measure, such as an average or accumulation. A state average measure is used as the 

default for a maintain goal state equation in Figure 42. Since the state measure needs to 

be re-defined or retyped for each unique goal regardless, it can be re-defined to the 

appropriate in-progress measure at that time. 
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e. Agent Logical Object Model 

A general pattern for an agent logical object’s structure is shown in Figure 43. 

The agent is composed of an overarching behavior and a world model. The agent’s 

behavior acts on the data stored in its world model. The world model includes Agent 

Knowledge and a World State Model (WSM). Knowledge includes declarative and 

procedural knowledge, particularly knowledge about standards of behavior. The WSM 

includes an Assigned WSM (ASWM) and a Derived WSM (DWSM). The DWSM is 

composed of the subordinate agent AWSMs. The agent’s behavior then generates 

commands to subordinate agents and percepts to superior agents as required given the 

current or belief state of the world and its goals. Each agent follows the same general 

pattern as indicated in Figure 43. 

 

Figure 43.  Agent Logical Object Structural Pattern 

The top level agent structure for a given MCPS consists of the mission agent and 

some number of task agents. An example system’s top level agent composition is shown 

in Figure 44 using a SysML Block Definition Diagram (BDD). Each of these agent types 
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represents a more specific person role and has the pattern shown in Figure 43. The 

mission agent is one role that a vehicle commander performs within an MIGVS for 

instance. Each task agent can decompose in a similar fashion to include an intelligent 

control agent and some number of detection agents within a BDD. They in turn also 

decompose into some number of sensors and controllers. A control hierarchy can thereby 

be fully elaborated from a mission agent at the top down through some set of sensors and 

controllers at the bottom. 

 

Figure 44.  Example Mission and Task Agent Structure 

Agents then interact via commands and percepts in a hierarchical pattern as 

shown in a SysML Internal Block Diagram (IBD) in Figure 45 for the mission and task 

agents. The “internal” in this case does not represent any physical containment. The 

commands and percepts are represented as signals that have directional flow between 

SysML proxy ports. Both the signals and the ports can be thought as some logical 

component (e.g., message and interface, respectively). The flow of information can go 

from the mission agent through tasks agents, ICA and detection agents, to 

controllers/sensors and back again. This flow of information represents indirect or 

horizontal logical flow as defined previously. Each component in the hierarchy has the 

internal behavior to track its world state of interest, store it in a world state model, and 

take appropriate action given changes in the world state based on the information flow.  
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Figure 45.  Mission and Task Agent Hierarchy 

2. Solution Independent Behavior and Logical Concept Design 

The structural concepts just presented are used to logically compose a system and 

its context in terms of objects. The system’s behavior can then be defined as the 

interactions of those objects. These object interactions have both “horizontal” and 

“vertical” aspects to consider. The internal behavior of a given ALO acting on the goals 

of its assigned and derived mission drive the horizontal interactions. 

a. MCPS Logical Composition 

As shown in Figure 46, from a system standpoint, the world is composed of two 

major entities: itself and everything else with which it interacts (i.e., its relevant context). 

Both the system and context can be “logically decomposed.” As identified previously, a 

general model of an MCPS can be defined in terms of the top level performer entities of 

Figure 40. The top level performer entities can be further decomposed to some leaf level 

object that has behavior. The decomposition is best done in the context of a given sub-
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domain. Note again that these leaf level objects are abstractions of physical things. Also 

note, that the top level performer objects are then logical collections of these physical 

abstractions that can have aggregate properties and behavior. The context entities can 

also be decomposed to objects or leaf level classes as required so as to define the world 

state space together with the system objects. 

 

Figure 46.  System and World Composition 

An example mobility logical decomposition is shown in Figure 47. With the 

exception of mobility agents and the mobility intelligent sensors, these entities represent 

actuator-controller pairs. For example, brake includes the brake itself and the brake 

controller. They are not distinguished for simplicity of presentation. The controllers also 

include any feedback sensors. The intelligent sensors are sensors that detect human-like 

intelligence and/or context understanding. They are part of the event-effect control loop 

shown in Figure 35 and would be paired with a detection agent based on what is being 

detected. For example, a stability sensor/stability detection or a lane sensor or lane 

detection agent.  
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The blocks should be solution independent as much as practicable in the initial 

conceptualization, though it is not likely to be system or sub-domain independent. A 

MCPS, or a least a ground vehicle system, can be thought to have an engine even it is 

largely composed of a battery pack. It should also have a transmission whether it is a set 

of mechanical gears and linkages or electric motors and linkages. The engine and 

transmission controllers are more problematic. However, the control of power or power 

draw to an electric power can be considered logically distinct from control of its direction 

no matter how likely they are to be combined in a physical solution. Secondary power 

generation supports specific types of loads. Examples solutions for ground vehicles 

would be an alternator or DC-DC converter to support electrical/electronic loads. 

 

Figure 47.  Example Mobility Logical Decomposition 

b. Conceptual Data Model 

All the system entities can be elaborated similarly to Figure 47. As indicated 

previously, the elaboration of mission, trajectories and goals results in the elaboration of 

the world entities, both system and context. The full elaboration of both system and 

context will define the entire world and world state of interest to the system. However, 
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each ALO world state model may duplicate entities relative to other ALOs. Given the 

potential data intensiveness of this approach and given the need to understand the full 

context relative to the system to support system analysis, a conceptual data model is 

warranted. A conceptual data model provides a means to directly reason about the data in 

the system. Though often used relative to data base design and data flow diagrams, it can 

also be a convenient view into the data that augments or aids an object or object-like 

design. A singular view into the data provides a visual aid that can promote efficiency 

and interoperability for ALO world state development and update. Dividing the entire 

world of interest into a set of concepts makes the reasoning about it tractable. It is akin to 

decomposing the external world into a set of features (Poole and Mackworth 2010) and is 

certainly a far more practical approach than reasoning about the world directly in terms of 

states. 

c. Agent Logical Object Interactions and Behavior 

The logical agent interaction of Figure 45 can be expanded with the mobility 

agents introduced in Figure 47. This is shown integrated in Figure 47 to emphasize the 

hierarchical agent interactions of Figure 33. Each agent receives commands from a 

superior agent and sends percepts back. Conversely, each agents sends commands to 

subordinate agents and receives percepts back. Each task agent could be similarly 

expanded. Each would have only one intelligent control agent and many detection agents. 

The intelligent control agents communicate with the controllers of the control-actuator 

pairs identified in Figure 48. Each detection agent would communicate with one 

intelligent detection sensor for control and data. The command and percept extend to 

these connections as well. 
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Figure 48.  ALO Hierarchical Interactions 

The ALOs are leaf level classes that have behavior when physically instantiated 

as objects. This behavior is shown in Figure 49 for the mission agent. However, each 

ALO follows the same behavior pattern. The command/percept parameter nodes of 

Figure 48 on carried by the command/percept signals shown in Figure 47. A command is 

received from some agent superior to the ALO in the agent hierarchy. This command is 

stored in the assigned mission state model (ASM) which is part of the ALO world state 

model shown in Figure 43. The command is analyzed to see what behavior is required to 

achieve the assigned mission. The results of this are derived mission state models 

(DSMs) and commands sent to subordinate ALOs in the agent hierarchy. The subordinate 

agents send back percepts to the ALO which then updates the DSMs, the ASM and a 

percept is sent to the superior agent. The cycle repeats itself as required and can extend 

down to the controllers of the sensors and actuators. After the initial command, the ALO 

will access what is currently stored in ASM and reconcile as required with derived state 

and commands. 
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Figure 49.  Mission Agent Behavior 

The assigned and derived state models include goals, goal states and current 

values about the real-world state space of interest to the ALO. The goals may include 

MOEs/MOPs appropriate to the assigned missions and trajectories. The derivation of 

missions and trajectories would then include MOE/MOPs required to support the 

assigned mission. Note that the ALO behavior is pretty basic at this stage of concept 

design (i.e., bring information in and move information out). The behavior is of course 

a much more challenging design problem if it is to be realized by computational 

technology rather than a human, to include the definition of a priori declarative and 

procedural knowledge required to behavior with a certain expertise. However, in either 

case, the behavior is limited by the information it receives and ultimately what the system 

can sense about the real world. For this stage of concept design, the behavior is focused 

on what information is needed and therefore what has to be sensed. 

d. Horizontal Behavior Logic 

As defined previously, the system behavior logic is the sum of all system behavior 

threads. These system behavior threads represent horizontal logic of indirect interactions 

that can trace from event to effect. A notional example of this horizontal behavior logic is 

shown in Figure 50 using the previous example of mobility. The mobility task (MobTA) 
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agent receives commands (CmdMA) and sends percepts (PercMob) to the mission agent 

and stores current state in the assigned mission state model per the ALO behavior pattern 

of Figure 49. It then derives mission for the intelligent control agent (MobICA) and in 

this case, one detection agent (MobDA). The MobTA sends the mission and any updates 

by command to MobICA and MobDA and receives status back via percepts. The 

MobICA derives and commands the control signals it needs to meet its assigned mission 

and sends signals to engine, transmission, steering, and brake control. The MobDA 

commands the road sensor as required. Both the MobDA and MobTA receive percepts 

back. From this point on, the interactions take the form of direct energy or signal flow to 

include interaction with the environment. 

 

Figure 50.  Mobility Horizontal Behavior Thread 

Only the running gear and the road sensor directly interact with the context. The 

MobICA and MobDA ALOs provide the respective logical interpretations of those 

interactions to the MobTA. Only the ALOs can detect the occurrence of an event and 

determine if a desired effect has been achieved. The MobTA decides on the appropriate 
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course of action based on the context and system status as compared to the assigned goals 

and then issues any required course correction commands to the MobICA. The context 

and system status reflect the current values of the world state space and the goals reflect 

the desired values. Any MOEs/MOPs are part of the goals and are decomposed through 

the ALO assigned and derived mission and can be linked to control system, sensor and 

actuator MOPs. The MOE/MOP dependencies can be defined by parametric diagrams in 

SysML and constraint equations. A full mobility mission would require more knowledge 

of the context, a wider state space, and therefore more mobility detection agents and 

intelligent sensors. 

e. Vertical Behavior Logic 

As defined previously, the ALOs require the support of a computational stack, 

either machine or human. This computational stack enables the indirect logical actions 

between agents through signal, data, and information transformations. The main purpose 

of the SC3 performer entity is to provide the autonomic control of the system, to include 

the computational stack, required to support the mission ALO and the indirect logical 

interactions of all ALOs. The computational stack of Figure 34 is shown in SysML in 

Figure 51. The key elements of the stack are listed below. 

(1) Information Support—this is more of a development reality than a 
necessary component of the stack. Rather than have unique information 
components for handling similar information (e.g., maps), common 
information support components will likely be utilized and interface as 
another application. 

(2) Operating Environment—provides logical abstraction service (e.g., data 
management), between applications and the operating system. 

(3) Operating System—provides logical abstraction services to the computer 
for scheduling tasks, managing memory, etc. 

(4) Resource Access—provides direct access to computational hardware and 
signal devices (e.g., device drivers). 

(5) Computation—computational hardware 

(6) Signal Control and Distribution—components that transform signals 
from one form to another to support distribution and physical interface 
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The purpose of the computational stack is not meant to provide a standard or 

precise definition, but understand the flow of logic and its constraints and therefore the 

impact on horizontal behavior thread performance. The flow of information does not go 

directly from one ALO to another as it might appear Figure 51, but takes one too many 

paths up and down the stack and goes through many transformations through different 

forms of information, data and signals. The constraints of this transformation and 

distribution are the performance attributes of the vertical stack components. These 

attributes include latency, throughput, various computational measures, various 

information or interoperability measures, and measures of the reliability or health of the 

components themselves. 

 

Figure 51.  Computational Stack 

Quantification of these MOPs cannot be defined until technology and architecture 

selection as well as identification of human operators if any, but the linkage of 

dependencies can be established as well as reasonable bounds on the MOPs. The 

architecture can range from a single stack for ALOs or a single stack for each ALOs. 
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These architecture extremes drive consideration of concurrency and have a different 

impacts on the MOPs, such as signal delays versus operating system access delays. In 

addition to the computation stack, other resource stacks for structure or power, 

particularly electrical power, could be similarly defined if considered critical for concept 

design. Structure is defined in this approach as its own unique performer entity, but 

electrical power is considered part of the SC3 performer entity. SC3 thus includes the 

components that make up the MCPS autonomic system the potential for direct analogies 

and allocation to any needed human autonomic system. 

The solution independent logic design is completed with the integration and 

iterative elaboration of these models just described. The object-oriented nature of the 

system classes should make a more iterative approach feasible (e.g., adding a new class 

does not break previous class definitions or their relationships). Also, the full definition 

and elaboration of all system objects, attributes, and their world relationships, is not 

necessarily needed to adequately inform the trade space. Certainly critical MOEs/MOPs 

along with their dependencies must be captured that drive trade space decisions of system 

architecture, technology solutions and any human operator allocation. However, since 

what is critical is not always known at the beginning of concept design, the object 

oriented system approach can provide a “whole” model of the system logic with varying 

fidelity based on its role and importance in the trade space analysis. 
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IV. PALLETIZED LOADING SYSTEM CONVOY FOLLOWER 

The concepts just described and modeled are applied to a MIGVS as a case study. 

The MIGVS selected is the Palletized Loading System (PLS). To understand the 

development of an agent and object based PLS concept model, a perspective of the 

MIGVS as a domain is first presented. The MIGVS domain is presented in terms of a 

domain system model, domain context model, an overall approach to concept design and 

the PLS as a design reference system and convoy following as a design reference 

mission. The domain system and context models are used directly in the generation of the 

agent and object based concept model.  

A. MIGVS DOMAIN 

At a certain level of abstraction, all MIGVS have nearly common logic—shoot, 

move, communicate and survive; this is so particularly for combat MIGVS. They are 

distinct mainly in the performance and constraint attribution of the logic. This logic can 

be embodied in a set common system performer class abstractions as well as common 

functions. Many tactical vehicles however have specialized missions and capabilities, 

such as launching a bridge, conducting route clearance, or in the case being studied here, 

hauling supply. These can be added to the common logic as a set of specialized system 

performer classes. 

1. MIGVS Domain System Class Reference Model 

System performer objects for the MIGVS domain can be hierarchically organized 

consistent in part with the theory of nearly decomposable systems (Simon 1962), or 

arranged in hierarchical levels so that the interactions within a level are a “different order 

of magnitude” than the interactions between levels. As Simon explains, hierarchies are 

composed of interrelated subsystems which are also hierarchical in structure and can be 

further decomposed until some lowest “elementary” component is reached. Simon also 

emphasizes hierarchies that are based on “who interacts with whom,” not on any 

necessary “spatial” relation. The “elementary” component in a software OOAD logical 

view can be defined as a snippet of code or a software “physical” part. This snippet of 
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code can be configuration item assembled into programs, executables, etc., which form 

the equivalent of a physical hierarchy for software. These are different hierarchies and 

may or may not bear similarities in structure. The hierarchy of a MIGVS logical structure 

follows the same principles, but its “elementary” components include more than software 

code. They include any components that can be instantiated from all the system objects 

and their sub-types. 

In addition to the physical assembly and logical structures, other hierarchies could 

be considered relative to the same components. How power is generated, distributed and 

then consumed is a hierarchy, how structure is organized and support components could 

be another hierarchy. Each of these can also be described as a different kind of 

interaction. Any give hierarchy needs to be based on a type of interaction. For a logical 

hierarchy, two types of interaction need be considered: 1) the logical dynamic 

interactions that occur for a particular behavior or set of behaviors, and 2) and a non-

dynamic interaction or long term interrelationship that occurs to achieve an overarching 

purpose. Thus, a logical structural hierarchy (LSH) is defined as a grouping of 

objects/components according to the preponderance of its logical interactions to 

achieving an overarching or common purpose. This hierarchy along with the other 

hierarchies mentioned are different views into the same components for a given system 

and represent a design vocabulary constraint. 

A ground vehicle domain model (Adams and Washington 2012) was developed 

that attempts to define a logical structural hierarchy for all possible domain components, 

including cyber components such as software, control systems, etc. It was referred to as 

the Standard Product Classification Hierarchy. This MIGVS domain model has been 

adapted consistent with the objectives of this research. The first three levels of the 

adapted model are shown in Figure 52. The MIGVS domain model organizes the logical 

hierarchy into a pattern that can be utilized by any MIGVS project and forms a superset 

of all possible elementary components. As such, it provides an object/component view of 

all possible logic for a MIGVS. The intent is for the logical structure of any particular 

MIGVS to be a selective instantiation from this domain model. It has the potential to 

provide a standard logical view into a systems EBOM as the physical view standard of 
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MIL-STD-881C. The leaf level components should be exactly the same except that it can 

provide greater granularity of software, electronics and control systems components and 

does can be used prior to a physical assembly and integration schema being selected. It 

can be considered a decomposition bill of material (DBOM). 

 

Figure 52.  MIGVS Domain LSH 

The MIGVS domain logical hierarchy in Figure 52 is organized into eight logical 

groupings or classes at the second hierarchical level. Though appearing functional, these 

are logical groupings of component abstractions or system objects. Each object at each 

level in turn has a hierarchy until arriving at some desired “leaf level.” The leaf level can 

be relatively high for early system abstractions, such as initial concept design, or can 

extend to the part level equivalent to a full EBOM if desired. The organization again is 

based upon the dominant form of interaction required between objects at a given level to 

achieve the fundamental purpose associated with the object above them. There are a few 



 122 

exceptions to this which will be explained. The second level logic is defined with 

discussion as follows: 

a. Structure 

The objects/components that provide primary and secondary structural support to 

all system objects/components as well as protection against the direct effects of the 

external environment. Component examples include turrets, hulls, cabs, electronic bays, 

hatches, and software “structural” components (e.g., files, executables). Components 

providing structural support have an interaction consisting of a balancing force or energy. 

Software structural components do not have interactions with the physical structural 

components, but contribute to the overarching purpose of providing structure. Structure 

does not currently have agents, but this is a current technological assumption and agents 

can be added when warranted. For example, embedding nanotechnology within the 

structure could perhaps change its properties in response to dynamic conditions or 

provide a behavior, such as health self-assessment. 

b. Survivability 

The objects/components that provide system-level protection against the direct 

and indirect effects of projectiles and explosives. Examples include armor, active 

protection systems, signature management systems, and fire extinguishers. Survivability 

currently does not have overarching agents to perform integrated survivability, again a 

technological assumption similar to structures. However, constituent survivability 

objects/components, such as active protection systems and autonomous or automatic fire 

extinguisher systems, can be modeled with an agent structure corresponding to roles. 

c. System Command Control (C2) and Autonomics 

SC2A is the set of objects/components that orchestrate mission and mission 

behaviors through the command and control of system resources, provide the underlying 

information/computation system resources, and that provide the behaviors required to 

maintain internal local situation awareness as well as certain actions as a consequence of 

that situation. A mission behavior is defined as any behavior that requires the support of 
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more than one tasks agent. This can include the overall mission, complex maneuvers such 

as hasty defense (Department of the Army [DA] 2012), and other relatively complex 

behaviors such as full spectrum operations and mission tasks (DA 2012). The mission 

agent as shown in Figure 45 is included here even though it has indirect logical 

interactions across the hierarchy. However, by definition it contributes to the SC2A 

overarching purpose. Also, it has a more or less continuing interaction with the SC2A 

task agent, so it is likely to have more interactions with it than any other task agent. 

The behaviors represented by the SC2A agents are historically the responsibility 

of the vehicle commander. These behaviors include: leading the system mission, leading 

the crew collective tasks, managing system resources through the mission, and 

maintaining internal situational awareness. The mission, SC2A task, detection and 

intelligent control agents play a role in supporting one or more of these behaviors. These 

in turn can be seen as roles performed by the commander, or as previously stated, they 

reflect an instance of the commander over some time frame. The commander switches 

between these roles to perform specific tasks as required. The application hardware 

acquires the necessary information and facilitates the action required for the agents to 

perform their role. 

As defined previously, the information and computation resources are the 

“objects/components that generate, transform, store or distribute information required by 

object/components” of the entire system. It reflects the computational stack shown in 

Figure 34 along with the information support components. Additionally, a set of 

computation software resources beyond the operating system and resource access are 

included such as those typically associated with “middleware” or the aforementioned 

quality attributes, such as cyber security. The computational hardware resources include 

the types of computing or models of computation and mass memory as a specialized 

types of computation hardware support. Computing types could include any of the 

models of computation in Figure 24, but are currently focused on “general purpose 

processors” and “signal processors” as the main processing components of concern since 

direct control of sensors/actuators are distributed through the hierarchy. Other 
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computational types could be added as technology advances, particularly agent or 

autonomy based computing technology. 

d. Mobility 

The objects/components that generate, distribute and store the primary motive 

force or energy of the system; that support or are associated with movement; and that 

direct and control the movement relative to the external environment. Components 

include engines, transmission, headlights, suspensions, brakes, alternators and driving 

agents. Following the common agent pattern, the driving agents include a driving task 

agent (DTA), multiple driving detection agents (DDAs) and a single driving intelligent 

control agent (DICA). The DTA performs the role of the driver and the DDAs and DICA 

account for the required driver skills. The DTA interacts via commands/percepts with the 

mission agent and in turn interacts with commands/percepts with the DDAs and the 

DICA. They in turn interact with the mobility direct control systems which are allocated 

throughout the 3rd level under mobility and that interact with the physical-mechanical and 

power/energy components. 

e. Lethality 

Lethality is the objects/components that acquire targets and can generate and 

direct lethal and non-lethal effects against those targets. Component examples include 

direct fire cannon, fire control, munitions handling, mortar and lethality agents. The 

lethality agents follow the common agent pattern.  

f. Tactical Command, Control and Communications (TC3) 

TC3 is the objects/components that receive and process mission orders, report 

tactical situations and events to appropriate unit command levels, and that manage or 

support tactical information flow. Examples include FM radios, satellite radios, 

embedded tactical network systems and protocols, and agents or application software. 

Here again, following the agent pattern there is a TC3 task agent (TC3TA), multiple 

detection agents (TC3DAs) and an intelligent control agent (TC3ICA). Most activity 

surrounding planning for mission command (DA 72012) occurs via coordination between 
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unit commanders apart from the MIGVS system level. The execution and the detailed 

planning requires participation and interactions with many of the system resources, for 

both these reasons, the mission agent is included as part of SC3 and as opposed to TC3. 

The mission agent interacts via indirect logic as required to process the unit plan, conduct 

detailed planning, and execute the mission. The TC3 agents handle the information flow 

between the system and friendly units as required to support the mission agent. Unlike 

other agents, the TC3 agents only interact with friendly elements in the external 

environment and do not create effects in the external environment otherwise. 

To the extent the system also includes roles that go beyond command and control 

of the system and to the extent that the resources of TC3 are the primary means of 

executing that command and control, the TC3 agents would include those additional 

“mission” agents. This would apply to upper levels of unit command such as battalion 

and company levels in maneuver units. The small unit level, such as platoons or sections, 

would have to be examined to determine the proper placement suitable for concept design 

analysis. For example, for a platoon leader managing hasty defense for his platoon 

resource responsibilities, may still rely on direct line of sight acquisition or require lower 

latency communication than that afforded from the tactical network. 

g. Tactical Intelligence, Surveillance, Reconnaissance, & Target 
Acquisition/Electronic Warfare (TISR/EW) 

TISRTA/EW is the objects/components that enhance situational understanding, 

evaluate threats, conduct surveillance and reconnaissance, and counter an external 

system’s or threat’s ability to conduct C3 and ISR activities. Examples include long range 

acquisition sensors, combat identification systems, and signal jammers. TISRTA/EW 

agents follow the same agent pattern, except there is no actuation that changes the state of 

the external environment. The agents correspond to roles and skills that are typically 

ascribed to the MIGVS commander. 

h. Mission and Special Equipment (MSE) 

MSE is different than the other second level objects in the MIGVS domain logical 

structural hierarchy that cover the common and/or combat logic for the domain. It is a 
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convenient collection of many miscellaneous objects that cover the remaining and more 

specialized logic possible in the MIGVS domain. The objects in the third level in general 

do not interact with each other and can be mutually exclusive, even to the fourth level of 

this hierarchy. An example is force projection, which is a mission area or type of mission 

that will bring with it a different set of objects/components. Two mission types are bridge 

launching and route clearance which typically would not be configured as a single 

system,  rather it is integral to the unique identity of a single system Sustainment can 

include security, medical and transportation missions among others. Chemical, 

Biological, Radiological and Nuclear (CBRN) can be specialized objects/components on 

multiple systems and missions, and can be a set of objects/components that perform a 

specific CBRN mission. When instantiated for a given system, MSE objects/components 

at the third and/or fourth levels will be elevated to the second level of the system 

hierarchical logical structure and each may have its own unique agent structure. 

For a MIGVS, the agent pattern can be related to types of roles or human 

positions, which in turn correspond to types of human or intelligent tactical tasks (DA 

2012). In general, the mission agent corresponds to the management of crew collective 

tactical tasks, the task agents correspond to individual crew member tactical tasks, and 

detection and intelligent control agents correspond to skills required by individual crew 

members to perform all their tactical tasks. As all the agents are defined or the pattern 

detailed, the agents effectively correspond to all the roles performed by all the crew 

members. The sensors can be related to a given crew member’s ability in the exercise of a 

role or task, to acquire the information needed to assess a situation and take appropriate 

action. The logic required by roles can now be modeled with a set of objects/components 

that is neutral relative to a specific physical solution, human or technological. Historical 

role types such as driving, gunning and commanding can be assessed in terms of 

autonomy, a mix of autonomy and human solutions, or a full complement of human 

solutions aided by information technology. 

These agents are the superset of domain ALOs that were previously mentioned 

and they correspond to human roles and sub-roles. These roles must be abstracted from 

their “human implementation” while still preserving some understanding or model of the 
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behavior. This requires operational analysis on a comparative system. However, the roles 

performed are similar or common across many systems. Combining the agent pattern 

with the MIGVS logical structure yields the agents and roles that can be utilized to model 

behavior. An example select group of ALOs are shown in Table 4 with their 

corresponding domain logical performer group and human roles or positions. A 

significant level of granularity of human behavior is thus delineated. 

Table 4.   MIGVS Agents, Logic and Human Positions 

Agent Logical Group Human Position 
Mission SC2A Commander 
SC3 Task SC2A Commander 
TC3 Task TC3 Commander 
TISR/EW Task TISR/EW Commander/Specialist 
Driver Task Mobility Driver 
Lethality Task Lethality Gunner 
Bridge Launch Task MSE-Force Projection Specialist 
Material Handling Task MSE-Sustain-Transportation Multiple 
CBRN Task MSE-CBRN Multiple/Specialist 
SC3 Intelligent Control SC2A Commander 
TC3 Intelligent Control TC3 Commander 
TISR/EW Intelligent Control TISR/EW Commander/Specialist 
Driver Intelligent Control Mobility Driver 
Lethality Intelligent Control Lethality Gunner 
Bridge Launch Intelligent Control MSE-Force Projection Specialist 
Material Handling Intelligent Control MSE-Sustain-Transportation Multiple 
CBRN Intelligent Control MSE-CBRN Multiple/Specialist 
SC3 Detection* SC2A Commander 
TC3 Detection* TC2A Commander 
TISR/EW Detection* TISR/EW Commander/Specialist 
Driver Detection* Mobility Driver 
Lethality Detection* Lethality Gunner 
Bridge Launching Detection* MSE-Force Projection Specialist 
Material Handling Detection* MSE-Sustain-Transportation Multiple 
Chemical-Biological Detection MSE-CBRN Multiple/Specialist 
Nuclear Event Detection MSE-CBRN Multiple/Specialist 
 

The asterisks (*) for the detection agents in Table 4 indicate that the possibility of 

multiples. Detection agents need to be defined relative to the skills that they embody, 

what needs to be detected, and the uniqueness of the associated sensor(s). For example, a 

many driving tasks require the need to stay within lanes appropriately. This implies the 
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need to detect lane or edge markings and their types or implications. Mobility tasks also 

require reacting appropriately to the dynamic environment, such as the behavior of other 

vehicles on the road. This implies the need to detect other vehicles and interpret their 

behavior. The sensor implications of these distinct detection tasks suggest the possibility 

of different orientation and focus. Though these detection and sensor capabilities are 

integrated into a single human solution, a human solution can be considered to be a 

relatively expensive solution. It is also possible that distinct sensor solutions and 

positions can yield better than human performance standard. The identification of specific 

domain detection agents will have evolve over time with application of the domain 

hierarchy, project and operational analysis, and autonomy and sensor technology 

maturation.  

There are also numerous mission types each of which could have a task agent, an 

intelligent control agent, and multiple detection agents. In the case of I/RSTA/EW and 

CBRN, these can be specialized capability of a system or the primary mission of the 

system, such as a scout vehicle or CBRN reconnaissance vehicle, respectively. These 

specialized vehicle system missions are quite numerous, so just a few examples are listed 

in Table 3, a bridge launcher system and a transportation tactical system that includes 

material handling for managing transported supplies on and off the vehicle. These 

systems will have much of the logic that are in common for all combat and tactical 

MIGVS systems, but will have the additional agents, underlying direct control objects, 

and sensors and actuators required to perform the specialized tasks. Finally, there are 

potentially more agents lower in the hierarchy, such as for Survivability/Hit 

Avoidance/Active Protection and Lethality/Munition Handling, as well as the 

aforementioned unit command agents whose role might be assigned to a given MIGVS. 

The agents along with the other logical objects in the MIGVS structural hierarchy 

form the “pick list” to instantiate any given MIGVS system. The agent objects enable the 

system to be instantiated independent of whether the intelligent behavior is to be realized 

by human operators or technology. Each of these ALOs can be thought to correspond to a 

physical instance of the human position or can be assigned to a hardware and software 

physical solution that represent a set of leaf level objects. They can reflect the “as is” 
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behavior of a comparative system or to postulate new behavior with new tactics. All the 

objects reflect a minimal level of behavior or basic purpose and properties that can be 

used to assess candidate specific component or technological solutions. 

2. System Context Reference Model 

In much the same way the system performer logic can be assembled as a superset 

of domain objects, the external context can be similarly objectified for the MIGVS 

domain. The superset of MIGVS domain objects, referred to as a System Context 

Reference Model (SCRM), are shown in Figure 53 for the first three levels of logic. 

These objects can also have attributes that reflect the state of the external context when 

defined at a moment in time, or that at least reflects the relevant state. As with the system 

domain structural model, this hierarchy can be decomposed until a specific physical thing 

or entity is defined. Conversely, depending the level of modeling abstraction, relatively 

high levels of entity abstraction could be considered leaf level with lower entities 

modeled as properties. As complex as defining the relevant world might seem, the U.S. 

Army has done this in various forms, to include doctrine (DA 2008) and command 

and control (JC3IEDM 2007), which were leveraged in the generation of the model in 

Figure 37. 

 

Figure 53.  MIGVS Domain SCRM 
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The SCRM like the domain system performer structural model can be used as a 

“pick list” of external context entities for system interactions. Together they represent an 

overarching world model for the system that can also be used to model both a goal state 

and belief state. These context objects change state when they produce events and when 

they absorb effects. The system objects produce effects to context events as needed. The 

second level domain context objects are defined as follows: 

a. System Connected 

System Connected Context is defined as context entities have overlap with the 

system boundary at some point in their life cycle. As indicated before, operating resource 

is used or consumed during system operation and includes material, energy, and 

information. The entity abstraction physical can be used for material and energy so as not 

to bias technology selection. Information is externally generated information that is used 

in some form by the system. Examples include mission orders, maps and control symbols 

(DA 2004). Payload includes operators, passengers, and material that is not an operating 

resource. The Tactical Network exists distinct from the system though the system has an 

interface component or embedded node. 

b. Friendly Forces 

Friendly forces are the set of mobile physical objects or “systems” that the 

MIGVS interacts in order to achieve its mission goals. These physical objects are further 

defined according to the role they perform relative to the MIGVS of interest: subordinate, 

command, lateral/team, support and dismounts. There is typically an interdependence of 

goals between these systems that requires coordinated planning and synchronization. 

Each of these objects can be service, joint, coalition or civil systems as indicated by their 

attribution. 

c. Threat 

Threats are the set of physical objects that can cause a MIGVS harm through its 

interaction during a military operation or as a consequence of being a military system. 

They can range from something as physically concrete as a projectile, to something more 
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nebulous such as a cyber security object, which can be mean the source of an on-going 

attempt at penetration, or an active cyber threat once penetrated. 

d. Civil 

Civil is the set of objects related to non-combatant human and societal elements 

that a MIGVS may interact with as an indirect result or consequence of a military 

operation, particularly in an urban environment. These objects can be virtual such as 

political areas, symbolic such as some traffic management components, and physical. 

Urban environments have a greater variety and density of objects than non-urban 

environments. 

e. Terrain 

Terrain is the set of objects that the MIGVS interacts with as a direct consequence 

of its mobility and has indirect impact on other system logic. These objects can overlap, 

but can be considered as distinct interactions such as vegetation on a landform, or have a 

dominant interaction such as snow/ice on a road. 

f. Meteorology and Weather 

Meteorology/weather is the set of natural and man-made objects that the MIGVS 

interacts with in the environment above the terrain, primarily related to atmosphere or air. 

These objects interact with structure in terms of protecting internal components, 

manipulators or actuators relative to effect creators, such as lethality, and any sensor as 

regards visibility. 

g. Facilities and Infrastructure 

Facilities/Infrastructure is the set of objects that the MIGVS interacts with the 

course of its life cycle that can be deemed “friendly” beyond friendly forces. They can 

overlap with similar civil objects, but are tracked differently since there attributes are 

more controllable relative to a MIGVS solution. These objects together can constitute an 

army post or military installation or some facsimile thereof. 
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3. MIGVS Concept Design 

Concept design is defined here as a system design abstraction that identifies major 

configuration items, system and configuration item allocated behavior, and the 

underlying implementing technology. Concept design can represent a baseline 

configuration from which detailed physical and behavior design proceeds. Concept 

design can also be used as a preferred system alternative to support a competitive 

acquisition in terms of program feasibility analysis, cost estimating, etc. The concept 

design phase generally includes one or more system conceptualizations that are analyzed 

via trade studies supported by a variety of analytical and simulation based techniques. 

Models in 3D CAD form a critical part of this conceptualization and support physical 

integration feasibility, mass property determination, and low level physical behaviors.  

a. Initial Concept Design 

The embodiment of cyber concepts: crew size, computational architecture, 

sensors, software, etc., not only impacts the mass properties of the system, but impacts 

the overall performance and operational effectiveness of the system. It has not only its 

own trade space to consider, but has an interdependency of trade space with the physical 

concepts and component solutions. The initial concept design of the cyber behavior must 

enable the generation of alternative cyber concepts and integrate when needed with the 

physical concepts. The analysis of physical and cyber are supported by different methods 

and techniques but must be periodically and finally integrated into a whole system 

concept. The initial system concept must enable, but not constrain the subsequent 

embodiment of the system and be used as a point of departure of cyber capability if 

required by the trade space analysis. 

The role of initial concept design is to capture the operational behavior and any 

required system behavior at a concept level of component abstraction. This concept level 

of component abstraction forms the initial concept EBOM with attribute types for the 

system that can be used to construct the initial physical EBOM of a CAD model and the 

initial “cyber” EBOM. Each EBOM can be expanded and/or adjusted through the 

generation of physical and cyber concept alternatives and specific attribute values as a 
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result of analysis and trade space exploration. The cyber concepts have physical 

constraints in the form of volume available, distribution of components, etc. The physical 

concepts have cyber constraints in the sense of whether the final integrated physical 

concept meet the needed operational behavior. Both the cyber and physical concept types 

need their respective separate identities to facilitate different types of analytical methods 

and they need to be integrated to facilitate a coherent system concept and interdependent 

trade space. Note that the initial EBOM does not do much to inform the physical concepts 

and the latter could be conducted more concurrently as the necessary recursion and 

integration can occur.  

b. System 4+1 Model 

The final concept design can be illustrated in a System 4+1 model as shown in 

Figure 54. This is similar to one of the many UML 4+1 versions as shown in Figure 3 

with some notable exceptions. The initial concept design is the initial logical view. As the 

concept design is formulated the initial logical view leaf level can be appended with 

specific implementations or technology and cyber attributes assigned values. The Process 

View represents the assembly and technological constrained logical view which will 

impact its ability to meet key operational and system behavior. As cyber components are 

physical realized, resource limitations and distribution will constrain the cyber 

performance. The Physical View is the more standard EBOM view would be ideally 

augmented with software assembly and components. The Deployment View represents 

the physical deployment and distribution of the EBOM as typically found in the CAD 

model. This Deployment View would ideally also include the software deployment to 

computing resources. 
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Figure 54.  System 4+1 Model 

Note that in the four views just described should have the same leaf level set of 

components. The difference is in the rollup of the components and how that roll up is 

used. For instance, the rollup of the Physical View is supports physical assembly and 

installation where the rollup of those same components in the Logical or Process View 

facilitates operational and system behavior analysis. The leaf level component represents 

the elementary component appropriate to the design stage abstraction. In many natural 

system hierarchies (Simon 1962), what is considered elementary is somewhat arbitrary, 

much like the atom was once considered the elementary component of matter. It can vary 

based on understanding, interest and other factors. This notion can extend to distinguish 

between the elementary objects that need to be defined for concept design versus 

engineering design. Concept design is the focus of this research and its elementary level 

is the point where specific technological or physical solution is introduced into the 

hierarchy. The elementary level for engineering design reflects part level detail final 

design and a configuration managed EBOM. If desired, the logical structure design could 

be elaborated to this level of detail, but this level of detail would not be required for 

concept design. Concept design does require selection or object instantiation with a 

component via a certain types of technology, to include some semantic information. 
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The “+1” view is the Context View. As mentioned previously, the equivalent of 

“use cases” is now embedded into the initial Logical View as goals. The context is 

critical to not only defining goals, but also serves the more traditional engineering 

purpose of bounding the system and identifying the system’s external interactions. An 

objectified context produces events and absorbs effects as its attributes change. Most 

operational goals reflect some desired effect or state of the context. The context’s state 

attributes can also be linked to METT TC variables (ADRP 3–0, 2012) that correspond to 

military planning and scenarios. Ideally, the context used in any analysis or simulation 

should track to the context that drives the system behavior. This warrants a distinct view 

of the context so as to facilitate translation if not have the same structure. 

4. Palletized Loading System (PLS) and Convoy 

The PLS A1 M1075A1 (Oshkosh Defense 2017) is a wheeled vehicle system with 

a built in Load Handling System designed to enable “supply and equipment distribution.” 

It is essentially a truck with a built-in crane that can also be configured with a variety of 

mission equipment. It can load and unload flat racks that have standard Army pallets. 

Distribution of supply is almost always conducted as a convoy mission. The M1075A1 

will be used as a design reference system and convoy as a design reference mission for 

this case study. The case study will amplify system and mission information based on 

identified references and expert opinion and translate them for capture in a SysML 

model. 

a. Design Reference System 

A design reference system is defined as an existing system whose crew and 

system capability are abstracted into a solution neutral component based logical or initial 

concept design. The PLS A1 vehicle system has similar components to any truck system 

in terms of mobility, structure and survivability, can accept most of the Army’s standard 

mission equipment in terms of TC3, I/RSTA/EW and lethality, and is typically operated 

by a crew of two. The LHS system gives the PLS its unique syntactic or structural logic 

identity. The structural logic and behavior vehicle, crew, and mission equipment are 

reversed engineered and abstracted into a set of solution neutral components. The crew 
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and crew behavior will be represented by an abstract set of ALOs and sensors that 

operate and control the other systems as appropriate. This logic can be utilized to analyze 

a particular cyber-related upgrade concept to the design reference system or used a 

baseline reference to support any replacement concept evaluation.  

b. Design Reference Mission 

A particular convoy mission, like any Army mission, is defined using a mission 

operations order that defines the purpose, expected threat, route plan, and other METT 

TC variables. The convoy will also include a manifest that describes the supply cargo that 

each PLS is to carry. The convoy can be configured into multiple March Units, will have 

a Convoy Commander, and may be augmented with gun trucks depending on the threat 

and other support vehicles. The focus here will be on the PLS that acts as follower 

vehicle within the convoy versus a leader-type system. Most of the PLS vehicles will 

function as follower systems in any convoy. The mission will begin with an operations 

order received by each follower system in the motor pool. The follower system will be 

required to obtain its cargo, follow appropriately within a convoy, and then deliver the 

cargo to some designated destination. 

Deliver or effect supply is the mission effect of the convoy overall and the 

follower PLS specifically. The convoy mission is synchronized and coordinated both 

internally and with appropriate external elements as part of the a priori mission plan and 

through its execution. The synchronization and coordination is accomplished through 

standard crew and military discipline behaviors such maintain tactical situation 

awareness, maintain effective communications, follow the route plan, follow the lead 

vehicle at distance and speed, etc. Additionally, certain “rainy day” behaviors are 

expected to be handled when encountered, such a avoiding an obstacle. These behaviors 

will be defined as explicit goals with desired outcomes in the state of the context and the 

system. Sources for convoy behaviors (ATP 4–01.45 2014) and crew behaviors (TC 21–

305-10 1994) will be from public information or highly generalized to basic behavior. 

The objective is to demonstrate the concept and not be an expert treatise on convoy 

behaviors. 
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B. AGENT- AND OBJECT-BASED PLS CONCEPT MODEL 

A general approach can be defined for developing a system’s initial logical 

concept design. This approach can be defined in terms of processes associated with 

model elements or artifacts. Though an order in general can be defined, many of the 

processes can begin independently and execute concurrently. Many of the associated 

artifacts overlap or are interdependent in terms of their elaboration. Also, there is both a 

“real physical” representation and virtual or data representation of certain classes or 

objects within the same model. The overall approach requires synchronized model 

elaboration among multiple artifacts or diagrams as they are initiated, linked, elaborated 

and finalized. There are artifact integration dependencies horizontally between them and 

hierarchically between the same artifacts for different agents. Since all model artifacts are 

“objectified” including missions, trajectories and goals, new objects can be introduced 

and added to the existing objects as required without undoing the previous work. The 

general approach is address the key “sunny day” mission and military discipline 

trajectories first and afterward address exception handling and any detailed behavior 

elaboration as needed. The proof of concept for this research is based on the key sunny 

day mission. 

The actual fidelity of the agent and object based concept model to support an 

acquisition program depends on the model’s purpose. Structural fidelity can be expressed 

in terms of breadth and depth of the objects as well as the attributes that define the state 

space of the objects and/or timing related performance. Behavior fidelity is expressed in 

terms of the mission and desired trajectory decomposition along with the interactions of 

the objects. This research has previously identify three purposes and each purpose 

requires differing degrees of fidelity:  

(1) Purpose #1:  Inform and augment the initial need or operational 
capability specification. Design reference missions are defined in 
conjunction with the user. Design reference missions should include 
critical behaviors or desired trajectories and associated state and time 
attributes. State attribute details and non-ALO object attributes are not 
needed for initial operational specification 
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(2) Purpose #2:  Support pre-award concept design feasibility. Identify key 
attributes of the behavior and the system components required to support 
a trade study. The selected technology should be identified and linked to 
the technology neutral component objects. The component object 
attributes should be defined where they match the trade study criteria 
used to evaluate the technology. 

(3) Purpose #3:  Define a logical design to be part of overall system 
technical baseline. All component objects defined and fully attributed in 
the technology neutral model or the logical concept design model. The 
logical concept design model should be extended with the selected leaf 
level technology selection. The leaf level components or parts will be 
defined in common with a CAD model engineering bill of materials 
(EBOM). The logical design will form a decomposition BOM (DBOM) 
view into the system’s components and parts.  

Assigned Mission Model. The pattern for an assigned mission state model was 

shown in Figure 41. The model defines the mission for a reference system (e.g., PLS), in 

terms of key tasks and their desired trajectories. It orders the trajectories and any sub-

trajectories according to their execution across mission phases and links goals to the 

desired state space. As the desired trajectories are decomposed, the goals ae typed as 

achieve or maintain goals and goal specification state measures are defined. The goal 

state measures reference properties in the selected state space. The state space consists of 

system performer and context objects and their attributes and elaborated as needed to 

define goal measures. The initial design reference system mission model is allocated to 

the Mission Agent (MA) and then apportioned out to the supporting tasks agents. The 

desired trajectories are successively elaborated and missions allocated to lower level 

agents until the control and sensor desired trajectories are defined. 

Define Logical Object Hierarchy. The logical object hierarchy consists of system 

performer objects and context objects. System performer objects are selected based on 

the design reference system and the domain logical hierarchy of Figure 52. If a suitable 

logical object cannot be found, a new logical object can be created and added to the 

domain logical hierarchy. The performer objects should be selected based on the mission 

and desired trajectories identified previously. These object can be alternately expanded as 

part of this overall hierarchy or expanded selectively as it is included in the state space of 

one or more desired trajectories. A given performer objects attribution is likely to be 
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expanded as it is needed to support a given trajectory. There should be one mission agent, 

a task agent for each top level system performer object, one intelligent control agent per 

task agent, and as many detection agents as required to realize the desired trajectories. 

Finally, the controls and sensors should culminate the selection of performer objects. 

These too will be defined in conjunction with mission and desired trajectory elaboration. 

The “controls” and “sensors” are actually combinations of control system, power 

amplifier, and actuator; and sensor controls and data conversion, respectively. 

In similar fashion to system performer objects, the context objects should be 

selected from domain context hierarchy of Figure 53 and from a review of the operational 

source material. A key objective is understand how the operator(s) of the design reference 

system views the external world, particularly as regards METT TC variables. The object 

and attributes are also elaborated in conjunction with their use in the state space of the 

mission and desired trajectory elaboration. The set of all performer objects fully 

elaborated and attributed together and the set of all context objects fully elaborated and 

attributed constitute the system concept data model. These objects pulled from a common 

reference and elaborated as state space for the mission and the various desired 

trajectories, will result in that common reference being a fully elaborated concept data 

model. 

Horizontal Interactions. The static behavior of the system is captured as a set of 

signal flows between performer objects of the system. As explained previously, these 

signal flows are of two types: horizontal or indirect and vertical or direct. The horizontal 

signal flow between performer objects are the interactions that drive state change within 

the objects and are captured using SysML IBDs. ALOs horizontally interact between 

each other and with controls and sensors using commands and percepts. These commands 

and percepts type the signals that flow between proxy ports that are types by ALO 

interface blocks. The mission agent horizontally interacts with the unit commander and 

the system task agents, the task agents with intelligent control and detection agents, etc. 

Each performer object set has a set of IBDs that define the interactions. These performer 

object IBDs are connected via an IBD with the mission agent. Together the entire set of 
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IBDs constitute the system behavior threads that encompass events and effects as defined 

by desired trajectories. 

Agent Internal Composition Models. Each performer class has one task agent, one 

intelligent control agent, and one or more detection agents. Additionally, the SC2A 

performer class also has the mission agent. Each one of these ALOs are modeled as 

SysML BDDs to include a behavior and a world model. As shown in Figure 43, the world 

model includes knowledge and world state model which in turn is composed of assigned 

world state model (AWSM) and derived world state model (DWSM). Knowledge 

includes standard attribution used in the computation of goal state constraints. The 

AWSM contains the ALO’s assigned mission and trajectories and the DWSM includes 

the assigned mission and trajectories of its subordinate agents. Note that with the DWSM 

allocation of trajectories that the decomposition of goals with allocation to agents is 

effect. Also, identified are the commands and percepts coming from and into the agent. 

These are the same commands and percepts that were types as signals in the IBDs. 

Agent Behavior. At the top level, the agent’s behavior is simply to manage its 

assignment, derive subordinate agent’s assignments, and manage their activities. It’s is 

essentially managing data in the form of world state models and the reception and 

issuance of commands and percepts as indicated in Figure 49. The agent must be able to 

evaluate the belief state and goal constraints and know what action to take as a result. 

From a concept design standpoint however, it is assumed if the agent has access to the 

necessary data, behavior can be designed to take the appropriate actions. The key to 

concept design is defining the necessary data in and out of each ALO and insuring there 

are sensors and controls appropriate to that data. The agent’s AWSM as assigned to it 

from the upper agent composition model is a parameter node that this agent’s behavior 

must access and update. This agent’s DWSM defines its lower agent AWSMs in its 

internal composition model which also types parameter nodes that the agent must access 

and update. Finally, the commands and percepts from the various IBDs and agent 

composition BDDs are also parameter nodes coming into and out the agent behavior. 

Vertical Interactions. As indicated in Figure 34, the indirect logical interactions 

must go through several direct transformations up, down and across a computational 
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stack and signal distribution from source to destination. The SC2A performer class 

defines these classes and objects for the system overall where they can then be directly 

connected to the other performer classes. Each performer class will add computation and 

signal classes to it performer-context pair and then elaborate direct vertical interactions as 

required. These vertical interactions are still abstract and logical as are the SC2A classes. 

The idea is to understand the logic that will need to be examined as specific computation 

and signal architectures are defined and assembled. This will represent a constraint on the 

horizontal thread performance that can be examined in a trade study. The SC2A contains 

the entire system’s computation and signal objects and their interactions. It can also 

receive commands from the mission agent and have goals. Goals can include providing 

computation and signal performance, availability, status, etc. A similar approach can be 

defined for power distribution to the system loads, but will not be explored in this 

research. 

Integration and Iteration. As was mentioned, though a general procedure can be 

defined, there is much interdependency between the associated modeling artifacts. A key 

set of logical structural dependencies is shown in Figure 55. The overall logical structure 

is composed of the system and context. The system is composed of a set of performer 

objects of which an agent is a type. An agent is composed of agent behavior and a world 

state model. The world state model is composed of an assigned mission that has one or 

more desired trajectories, each of which has one end state goal. The goal has state 

measures that reference a state space which in turn references the system and context 

objects of the logical structure. The agent behavior operates on parameter nodes: AWSM 

which is part of the agent world state model that reflects its assigned mission, a command 

that goes to a subordinate agent via a signal and that contains its allocated goal state 

values, and a percept that goes to a superior agent via signal that contains current state 

values to that same goal state space.  
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Figure 55.  Agent Model Structural Relationships 

There are other relationships between model elements that are not shown. These 

include: the DWSM behavior parameter nodes and composition part of the WSM that 

reflect the subordinate agent assigned world models, world model knowledge that’s part 

of agent composition, percepts coming from subordinate agents, commands coming from 

superior agents, ports on IBDs that are typed by agent interface blocks, and the 

commands and percepts that type signal flow on IBDs. All these relationships between 

model elements need to stay linked as they are elaborated. It is easier, if not necessary, to 

go back and forth between model elements as the decomposition of each progresses 



 143 

rather than try to decompose to the lowest level of one model element. Note that in the 

iteration, much logical decomposition takes place. 

What follows is the development of these respective model elements relative to 

key PLS performer objects. All model elements: assigned mission, logical object 

hierarchy, horizontal interactions, agent composition and agent behavior, are first defined 

relative to the system and the mission agent. Then more elaborated versions of the same 

model elements are defined for material handling. Finally, the other performer objects are 

addressed. Each performer object elaboration is augment with an appendix where the full 

description of the model elements can be seen. 

1. PLS and Mission Agent 

The mission agent (MA) by definition manages the mission for the system and 

sits atop the logical behavior hierarchy. As such, the mission agent receives the PLS 

assigned mission and is the top level logical interface between the system and unit and is 

responsible for overall mission effectiveness and performance. 

a. PLS Assigned Mission 

The assigned mission to the PLS is convoy follower. The PLS assigned mission 

orders and phases the tasks and desired trajectories required to perform the convoy 

mission. The major tasks are supply effect, tactical situation awareness, command 

synchronization, various forms of maneuver, and provide autonomics. Each of these tasks 

include a set of desired trajectories or even recursive desired trajectory hierarchies. Tasks 

and trajectories include a portion of the assigned mission state space. The assigned 

mission includes a state space that bounds the system interest in terms of performer and 

context logical objects. The desired trajectories and state space are further decomposed 

and detailed within each performer object. All the relevant information from the mission 

order is included in the assigned mission and may include some tasks that would typically 

be part of institutional or unit training of human operators, such as military driving. The 

latter enables greater adjustments to mission rules and conditions if needed; that is, the 

system can take on more or less risk in the performance of a given desired trajectory 

depending on overall mission criticality. 
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The assigned mission has a variable that identifies the current phase: planning, 

preparation, execution and refit. Each task then initiates in some planned order via an 

order number that also identifies the phase or phases. In turn, each desired trajectory 

within the task and each sub-trajectory with the desired trajectory also initiate within 

some planned order. The tasks will typically initiate early in planning or preparation and 

last until refit and run concurrently. Desired trajectories will be shorter, but may occur 

several times over the mission plan and may execute in sequence or concurrently with 

other task desired trajectories. For a supply effect task example, it has three top desired 

trajectories, acquire supply which occurs during preparation and transport supply and 

deliver supply occur during execution, though the latter constitutes the end of the 

execution phase and the release from the convoy. The mission agent orchestrates this 

activity and all planned behavior should execute in the proper phase and order barring 

unplanned events. In this sense, the mission order as planned represents the sunny day 

behavior of the system. 

Examples of training tasks and non-sunny day behaviors are mission exceptions 

(i.e., events that occur which cause a departure from the mission plan, at least 

temporarily). Response to these events are not planned in the mission order by definition, 

but are known to happen per doctrine. As shown in Figure 56, identified exceptions are 

leader error, obstacle avoidance, defensive position, and rally. Many more exceptions are 

possible. Though not part of the plan, the system must respond predictably to these 

events. In this sense, they can be identified as a task that gets invoked similar to an 

interrupt. The exceptions will not be elaborated with the rest of the model, they are only 

illustrative of how they would be handled by the system using this approach. Each 

specific exception would be identified and linked to an interrupt. Any aspect of the 

standard mission that competes with the exception will be at least temporarily suspended. 

Once the exception is addressed, the system will try to return to the original mission order 

and provide a report back to unit command indicating its status relative to achieving the 

mission order goals. Unit command can issue new instruction via a fragmentary order if 

need be, and a new plan would be initiated. 
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Figure 56.  PLS Assigned Mission 

b. Mission Agent Logical Object Hierarchy 

The mission agent logical object hierarchy is shown in Figure 57. It bounds the 

relevant state space and when fully elaborated, also serves as the system concept data 

model. It consists of both performer logical objects and context logical objects. Since the 

mission agent orchestrates the overall mission and associated goals, it also must be 

cognizant of the entire mission state space, at least at some level of abstraction. Lower 

level tasks and desired trajectories pull from this model as required and may elaborate 

both entities and attributes. Per the modeling language and tool, they become part of an 

elaborated concept data model during the elaboration process. 

Note that although the mission agent is cognizant of the entire state space, it only 

knows current state based on task agent percepts and goal state based on convoy task 

force command; that is, it only indirectly logically interacts with the task agents and 

convoy task force command and does not sense the environment directly. The mission 

goals are divided and allocate among the task agents for each top level performer: 

material handling task agent (MHTA), tactical C3 task agent (TC3TA), IRSTA task agent 
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(IRSTATA) and the system C2 and autonomics task agent (SC2TA). The top level 

context objects are system connected, friendly force, civil, terrain, meteorology and 

weather, and both a source and destination military based. The mission agent tracks the 

state of the context either from external tactical reports that are augmenting information 

from orders it receives, or from performer object sensors that are passed up through the 

agent hierarchy. 

 

Figure 57.  Mission Agent Logical Object Hierarchy 

The system performer logic elaboration is shown in Figure 58. It represents a 

selection from the domain logical hierarchy shown in Figure 52. It identifies the full 

complement of performer types for each top level performer: sensors, controllers, and all 
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the three agent types: task agent, intelligence control agent and detection agents. Each 

performer logic is subsequently elaborated as part of that performer’s overall assigned 

mission and state space elaboration (i.e., material handling only elaborates itself, not 

other performer objects). 

 

Figure 58.  PLS Performer Logical Object Hierarchy 

The PLS context elaboration is shown in Figure 59 as selected from the domain 

context logical hierarchy of Figure53. Each performer logic elaboration mentioned above, 

may elaborate or add any object in the context. The duplication is realized only in the 

individual performer object hierarchy, the state space of Figure 57 will only have the 

unique additions. 
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Figure 59.  PLS Context Logical Hierarchy 

c. Mission Agent Horizontal Interactions 

The mission agent horizontal interactions are shown in Figure 60. These are 

shown as any other signal interaction in SysML on an Integrated Block Diagram (IBD). 

All interactions further explored will of this same type except for where direct 

interactions are specifically identified, and where controller and sensors interact with any 

plant objects or context objects, respectively. As mentioned previously, the mission agent 

horizontally interacts with each task agent and the convoy commander. The proxy port 

naming convention is based on what it connects to rather than where it is located. 

However, the ports are typed by interface blocks of the lower agent for the commands 

and percepts. For example, the command and percept “signals” between the mission 

agent and the MHTA are owned by the material handling interface blocks and referred to 

as MHTACmd and MHTAPerc. The signals or connectors between agents are typed with 

those commands and percepts and given the appropriate direction as shown in Figure 60. 



 149 

 

Figure 60.  Mission Agent Horizontal Interactions 

d. Mission Agent Internal Composition 

The Mission Agent (MA) internal composition shown in Figure 61, like any ALO, 

follows the general agent composition pattern of Figure 43. Its assigned world state 

model (AWSM) is the assigned PLS mission of Figure 56. The MA derived world state 

model (DWSM) is composed of the various task agent AWSM models and they contain 

the mission tasks allocated to them. Each of those tasks are elaborated as needed. As 

shown in Figure 61 for example, the supply effect tasks has three top level desired 

trajectories: acquire, transport and deliver. The acquire supply trajectory in turn has 7 

trajectories. These desired trajectories along with their respective goals and state space 

are elaborated as part of Material Handling, though in operation, the upper level 

trajectories are assigned as part of the mission order. The commands and percepts from 

the horizontal interactions of Figure 60, are linked to the appropriate AWSM model. 

These commands and percepts communicate goal state and current state of their 

respective AWSM model.  



 150 

 

Figure 61.  Mission Agent Internal Composition 

e. Mission Agent Behavior 

The mission agent behavior is shown in Figure 62 as a SysML activity diagram. It 

follows the general agent behavior pattern of Figure 49. The mission agent AWSM along 

with each task agent AWSM are types as parameter nodes. Also types as parameter nodes 

are the commands and percepts that go between the mission agent and convoy 

commander and the mission agent and the respective task agents. These are the same 

command percept types as shown in Figure 61 and has used for IBD connector typing of 

Figure 60. The agent behavior is very generally defined as manage assigned and manage 

derived. Fundamental to both behaviors is the ability to determine current state and time 

as expressed in the constraint equations, and then, assess whether the current state 

constitutes sufficient progress toward achieving the assigned goals. Beyond that, the 

agent internal behaviors generally move data in and out via commands and percepts and 

then store, access, and update as needed. 

The actual detailed behavior is non-trivial. The data in represents commanded 

goal assignments from superior agents or status of current goals from subordinate agents. 

The mission agent would have to know specifically how to derive the needed goals 
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assignments and what would constitute sufficient progress toward achieving the goals. If 

sufficient progress was not achieved, the MA would have to derive a plan to fix and 

notify the convoy task commander. However, at this stage of conceptualization, it is more 

important to understand the data; that is, if the data is sufficient, an algorithm can likely 

be designed to achieve the detailed behavior. Important to the system conceptualization, 

is what data needs to be understood and how is this data to be acquired. Little would be 

gained by trying to capture behavior design in a detailed activity diagram at this stage. 

 

Figure 62.  Mission Agent Behavior 

f. Mission Agent Integration 

The five model elements with some key relationships are shown in Figure 63. 

Together they provide the conceptualization of the mission agent. The full attribution of 

the mission agent assigned desired trajectories and related logical object hierarchy will 

not be completed until the lower level agents are elaborated. Since the lower level agent 

models are elaborating the model elements of the higher level agent, it will be attributed 
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as the lower level agent goals are defined. There is point in the lower level elaboration 

that goes beyond the concern of the mission agent (i.e., defines detailed goals below its 

assignment), but that detail is not viewable at that level of abstraction and can ignored by 

the mission agent. 

Beginning with the assigned mission and desired trajectories, an agent with 

related performer context objects must be identified in the logical object hierarchy. The 

performer and context objects constitute the state space used to assign mission goals. The 

agent has an internal composition that includes behavior and world state models, an 

AWSM and a DWSM. The assigned mission is allocated to the AWSM and allocations or 

derivations of this AWSM is assigned to its DWSM, which is composed of the lower 

level agent AWSM models. The agent interacts with lower level agents and communicate 

goal state via commands and current state via percepts. The agent behavior manages this 

communications and compares goal state to current state to determine the correct course 

of action. 

 

Figure 63.  Agent Model Integration and Relationships 
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In similar fashion, each of the five model types are created for the lower level 

agents spread across the five performers. Unlike the mission agent, these agents detail the 

trajectories and link to goals until the interaction with controls and sensors are defined. 

As the goals are elaborated, it is more difficult to fit all the information on a single 

diagram, but they are integrated in the model and can by starting at the higher level and 

elaborating the upper trajectories. There also is an iteration of elaboration that needs to 

take place between the assigned desired trajectories, the logical object hierarchy and the 

agent composition. This iteration is not obvious in a sequential presentation. A detailed 

thread for Material Handling and more brief and nuanced descriptions of the other 

performer agents will follow. A more complete set of diagrams for each performer agents 

is included in the Appendix organized by top level performer objects. 

2. Material Handling 

PLS material handling has the components required to load, unload and transport 

supply as required by the mission. Delivering supply is the primary mission effect of the 

PLS. 

a. Material Handling Assigned Mission 

The next level of decomposition of the Supply Effect task from the MA assigned 

mission as shown in Figures 59 and 61, is shown in Figure 64. As was mentioned 

previously, has three top level desired trajectories, one of which, Acquire Supply has 

seven next level trajectories. Transport Supply and Deliver Supply have two and seven 

desired trajectories, respectively. Supply Effect has a State Space which is selected from 

the overall assigned mission state space and includes all the material handling  performer 

objects and selected context objects relevant to material handling. The desired trajectories 

execute in sequential order: Acquire, Transport and Deliver. 
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Figure 64.  Supply Effect Task 

The seven desired trajectories for Acquire Supply are shown in Figure 65. Each of 

these in turn has at least on supporting desired trajectory. Acquire Supply’s mission phase 

is preparation. The task order is sequential as follows: Identify Cargo, Verify Supply, 

Cargo Move Ready, Unload Midpoint, Unload Flat Rack, Load Midpoint and Load Flat 

Rack. Cargo Move Ready has two levels of supporting desired trajectories. In general the 

system has to locate the cargo and make sure that it is the proper relative position to 

inspect the cargo content or load the cargo, verify that the cargo content matches the 

manifest, verify that the ground can support proper loading and that the cargo itself is 

ready to be loaded, and finally to load the cargo. 
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Figure 65.  Acquire Supply Desired Trajectory 

The cargo move ready goal is shown in Figure 66. It is typed as an achieve goal. 

It inherits all the goal properties from Figure 42 as shown in the Cargo Move Ready Goal 

block. Time goal measures are straightforward value assignments. The concern for this 

goal and all the goals in this modeling approach are the state-related measures. The state 

constraint equation is “redefined,” a SysML procedure, and a new constraint equation 

defined that reflects the actual state for Cargo Move Ready. Once the actual state is 

established, the standard goal satisfactions constraints inherited can use the actual state 

(i.e., is the goal state satisfied; has the goal executed in the right phase and right order). 

Since there are three supporting desired trajectories, the cargo ready to move actual state, 

in this case, is expressed as a Boolean combination of those actual states. The state could 

be expressed as either a physical state or in terms of a value that can be compared to a 

goal target value of one. 
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Figure 66.  Cargo Move Ready Goal 

The three supporting desired trajectories of Cargo Move Ready can be executed in 

any sequence. The Verify Ground goal is shown in Figure 67. The incline and firmness of 

the ground beyond certain limits will exceed the nominal design capacity of the loading 

mechanism. The cargo’s actual incline and firmness relative to the ground or improved 

surface area will have to be checked against those limits. Verify ground has two 

supporting desired trajectories to detect actual incline and firmness. These trajectories in 

turn have goals with actual state constraint equation and supporting sensor trajectories. 

Their actual state constraint equations are expressed as a function of the sensor data. The 

point of detection trajectories is to detect incline and firmness events (i.e., achieve a state 

of knowledge). The ground is verified as being able to support loading when the actual 
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incline and firmness are within specified limits. This is expressed in terms of a difference 

function converted to a value expression. The other sub-trajectories, Proximity 

Awareness and Cargo Ready, are similarly elaborated and together are used to determine 

if the cargo is ready to be loaded.  

 

Figure 67.  Verify Ground Goal   

The overall state space for Verify Ground is shown in the center of Figure 67. It is 

drawn from overall Supply Effect state space and attributed as constraints are defined. 

The ground sensor has to provide the needed signal data to that senses the Improved 

Surface Area incline and firmness. The Improved Surface Area is a terrain context object. 

The Material Handling Task Agent (MHTA) must has the knowledge of the specified 

limits of incline and firmness used in the constraint state equation. The knowledge is part 

of the world model of the MHTA which is a performer objects. The MHTA Knowledge 

block has other knowledge required for state constraint equations form other desired 

trajectories. 
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Before it is determined that the cargo is ready to be loaded, the actual cargo must 

be determined and compared against the manifest. The human operator, or in this case an 

agent, is verifying that the supply that is supposed to be there, is actually there. This 

requires physical inspection of each supply item loaded on the pallet. The Verify Supply 

desired trajectory is shown in Figure 68. The actual state of the supply content is detected 

based on sensor data and compared against all possible types of supply with identified 

quantities. This actual state is then compared against the manifest using a distance 

function to determine the supply there, not there, and any unidentifiable items. This 

actual state is then compared to the goal target which is a one-to-one match of the actual 

cargo content to the manifest. Not addressed are the many nuances of goal tolerance. For 

example, missing a number of large caliber ammunition is probably much worse than 

missing an equivalent number of cigarette cartons. 

 

Figure 68.  Verify Supply Desired Trajectory 

The Verify Supply state space is shown in the center of Figure 68. It consists of 

the identified signal data from the sensor and the following references to supply content: 
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the actual content of the cargo, the manifest which is type of information object which in 

turn is a type of context operating resource, and the knowledge of all possible types of 

supply in both the Cargo Detection and Material Handling Task agents. The cargo sensor 

includes signal data from other Supply Effect trajectories that have a concern relative to 

the cargo such as whether is secured and the weight properly distribution from the Cargo 

Move Ready desired trajectory. This sensor data is shown in Figure 69 relative to the 

sensor reference trajectories and their associated detection desired trajectories. The 

reference trajectories refer to the commands sent to the sensor controller and may be 

simply be a control set point. The overall sensor state includes these trajectories along 

with the sensor signal data. 

 

Figure 69.  Cargo Sensor Reference Trajectories 

Once the correct cargo is identified, the supply verified, and the cargo determined 

to be ready, it can be loaded. The most restrictive loading condition occurs with a 

minimum length to load. In this case, the flat rack is unloaded to a midpoint of the cargo 

bed, then the truck moved out while holding the flat rack position, and then the flat rack 
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is lowered to the ground. Some external supply agent then loads the pallet with the cargo 

onto the flat rack, and then the loading process proceeds in the reverse order. This is 

shown as the top level desired trajectories in Figure 70. Here again, there is an optimum 

flat rack position relative to the midpoints, vehicle location and the ground location. In 

each case the actual load state is calculated as a difference function between the optimum 

position and the actual flat rack position. Note that the movement of the vehicle occurs 

between the MA and Mobility Task Agent once the MHTA notifies the MA of the 

midpoint position. 

 

Figure 70.  Load Supply Desired Trajectories 

The loading state space is relatively simple, consisting of the optimum position 

knowledge and the flat rack position. As indicated in Figure 71, the flat rack position is a 

function of the feedback received from the four material handling controllers: Boom 

Control, Lift Control, Telescopic Control and Stabilization. This feedback is sent in 

response to the control reference trajectory or set point sent to each controller. The set 

point is unique to each load position and therefore as unique name. Once the flat rack is 

loaded with the cargo and the supply meets the target goal relative to the manifest, 
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acquire supply is complete. The next trajectories of Transport Supply and Deliver Supply 

proceed in sequence. These trajectories and other Acquire Supply trajectories of Figure 

65 can be found in the Appendix. 

 

Figure 71.  Intelligent Load Control Trajectories 

b. Material Handling Logical Object Hierarchy 

Portions of the material handling (MH) logical object hierarchy have been 

referenced in each of the desired trajectories previously discussed. The MH logical object 

hierarchy includes all those references minus duplication and with the performer agents 

specifically identified. It consists of a set of the performer objects and a set of context 

objects as shown in Figure 72. 
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Figure 72.  Material Handling Logical Object Hierarchy 

The material handling performer objects are shown in Figure 73. There are six 

ALOs: one task agent, one intelligent control agent and four detection agents. Each 

detection agent corresponds to a sensor organized around the objects in the context that 

the sensor is to detect. The “sensor” is a conceptual abstraction to define the key state 

attributes and may be realized by a single sensor, multiple sensors, or be combined 

relative with other sensor abstractions. The sensor state is a combination of any control 

that determines its focus and/or area of coverage and the data itself. At this level of 

abstraction, the sensor converts some phenomenology to a data or cyber signal. Any 

interpretation of the context is done by the detection agent as function of the sensor signal 

data as identified in the constraint equation. Sensor signal data is identified by the 

information it will provide for use in the function, such as area of coverage, presence, 

range, identification, track, etc. The intelligent control agent controls for control objects: 

boom, telescope, lift and stabilization. These in turn control the plant (i.e., crane). The 

control objects are an abstractions of a controller, power amplifier and any feedback 

elements.  
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Figure 73.  Material Handling Performer Logical Object Hierarchy 

A key object in the context is defined as the Cargo Supply. It is the combination 

of transport elements, physical supply and the manifest as shown in Figure 74. The 

transport element consists of a pallet or ISO container and a means to secure the pallet 

(e.g., straps and hooks). The physical supply is the actual supply being shipped and can 

be any combination of ten classes of supply. Each of classes has sub-classes as shown for 

subsistence items. The manifest is a list of items that are supposed to be shipped. As was 

indicated before, the system must verify that the actual cargo content matches the 

manifest. For human operation, the crew or commander is accepting responsibility for 

that supply during transport. There is a third version of supply as part of the MH task and 

detection agent knowledge. This is used to for detecting the actual cargo on the pallet and 

includes a list of all possible types of supply. It is represented as a single property or list 

when referred to in the trajectory actual state constraint equations. However, each 

reference is actually a complex data structure and refers to the many data items listed in 

Figure 74 with specific identity and quantity. The constraint equations are framed as a 

weighted value composite of a many variable distance equation. For supply convoy, this 
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value composite is the key state effect from which to judge mission completeness. 

Mission completeness of 97% for example would be the percentage of items delivered 

relative to the manifest, with a presumed weighting of critical items over non-critical 

items. 

 

Figure 74.  Cargo Supply Logical Object Hierarchy 

c. Material Handling Interactions 

The interactions of the agent objects, the detection agents and the sensor objects, 

and the intelligent control agent and control objects are shown in Figures 75, 76, and 77, 

respectively. The interactions again are indirect logical commands and percepts and 

follow the same pattern and naming convention as discussed previously for the mission 

and task agents. The detection agents share a name identifier and communicate one for 

one with a sensor: Cargo, Ground, Overhead, and Pedestrian. The intelligent control 

agent communicates with all control agents. This is required to insure a coordinated state 

and no contradictory direction. Though commands and percepts are sent to control and 

sensor objects, they are not managed as goal and current state within those objects. The 

commands are typically set points or reference trajectories as discussed previously. The 

response is feedback and or signal data as appropriate. Not that the mission agent 
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connected to the MHTA connected to ICA and DAs, and so on, are all connected. The 

entire system could be represented real estate permitting. Though the mission plan and 

associated desired trajectories have a certain sequence, the interactions can be concurrent 

and can be either asynchronous or synchronous. In this sense, the agent object executes 

more like an actor model than a finite state machine.  

 

Figure 75.  Material  Handling Top Level Agent Interactions 

 

Figure 76.  Detection Agent and Sensor Interactions 
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Figure 77.  Intelligent Control Agent and Controller Interactions 

d. Material Handling Internal Agent Composition 

The internal agent composition of the material handling task agent (MHTA) is 

shown in Figure 78. It follows the agent internal composition pattern previously 

discussed and as presented for the mission agent. The MHTA assigned world state model 

(AWSM) has the supply effect trajectories as assigned from the mission agent. It has a 

derived world state model (DWSM) that is composed of the AWSMs of the subordinate 

agents: the intelligent control agent (MHICA) and four detection agents: Cargo (CarDA), 

Overhead (OvDA), Ground (GrDA) and Pedestrian (PeDA). The detail trajectories that 

are part Acquire, Transport and Deliver desired trajectories, are allocated to these various 

subordinate agents. The commands and percepts between the MHTA and mission agent 

and the MHTA and the subordinate agent as reflected in the IBD signals reference the 

respective AWSM. Trajectory goal states are communicated in commands and current or 

belief state is communicated in percepts. Also shown as part of the agent world model 

(WM) is the Knowledge that was required for the actual state constraint equations as 

elaborated in the assigned mission and desired trajectory decomposition. 
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Figure 78.  Material Handling Task Agent Composition 

The CarDA is the most complex of the detection agents. It has seven assigned 

trajectories in its AWSM as shown in both Figure 78 and 79. It also has a DWSM that 

has a single AWSM for the sensor (CarSen) with the sensor trajectories and sensor data 

signals previously discussed. As is the pattern, the CarDA receives commands and sends 

percepts with the material handling task agent relative AWSM goal state and current 

state, respectively. Similarly, it sends commands to and receives percepts from the 

CarSen sensor. The sensor however does not manage these as goal state and current state, 

it manages it as an input (e.g., set point for control), and responds with signal data that 

the detection agent can interpret. The stored knowledge required includes optimum load 

location relative to the vehicle, the ability to recognize properly secured cargo, and an 

understanding of proper weight distribution. This knowledge again is used in the desired 

trajectory actual state constraint equations. The other three detection agents are similarly 

defined and included in the Appendix. 
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Figure 79.  Cargo Detection Agent Composition 

The material handling intelligent control agent (MHICA) is shown in Figure 80. 

Like any ICA, one ALO controls multiple control objects to insure an intelligent 

coordinated response. For each of its assigned trajectories: Load Midpoint, Unload Flat 

Rack, Load Midpoint, and Unload Flat Rack, the MHICA sends a control signal to Boom, 

Telescope, Lift and Stabilization control objects. Here again, these control objects see the 

commands as set points or reference trajectories and the percepts are just position 

feedback. The knowledge required by the MHICA is to know what the optimum positions 

are during loading and unloading. The MHICA assignment would reflect this knowledge 

as a target but may vary the tolerance based mission considerations. 
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Figure 80.  Intelligent Control Agent Composition 

e. Material Handling Agent Behavior 

Part of each ALO internal composition is behavior. As previously discussed, each 

ALO has the same behavior at this stage of conceptualization. It must manage the 

interaction with its superior agent and its subordinate agents, store its assignment, derive 

subordinate agent assignments, and take appropriate action based on current state. The 

distinction between each ALO is in the data or knowledge from which it bases its 

behavior. For the MHTA as shown in Figure 81, the commands and percepts with the 

mission agent type SysML parameter nodes and flow into an out of pins to manage 

assignment. It is similar for the commands and percepts for subordinate agents and 

manage derived assignment. These commands and percepts are the same signals that 

show up on the respective IBD and agent internal composition models. The respective 

AWSM as assigned from the mission agent, and the derived AWSMs of the subordinate 

agents, from the agent internal composition type SysML parameter nodes that are 

accessed and updated by the internal behavior. Again, the details of this behavior is not 

trivial, but more of a standard autonomous design task if so allocated. This behavior finds 

an optimum path through the state space given a goal state and a current state. The 

CarDA and MHICA are similarly defined in Figures 82 and 83. 



 170 

 

Figure 81.  Material Handling Task Agent Behavior 

 

Figure 82.  Cargo Detection Agent Behavior 
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Figure 83.  Material Handling Intelligent Control Agent Behavior 

Each material handling diagram type has relationships to one or more of the other 

diagram type as shown for the mission agent in Figure 63. Though presented 

sequentially, much iteration needs to take place as the diagrams evolve. The mission 

agent integrates all the behavior of the performer objects through interaction with their 

respective task agents, but the goals are best elaborated within each performer object as 

allocated trajectories from the mission agent. All performer objects follow the same 

pattern as material handling and will be briefly be briefly summarized subsequently with 

the full complement of diagrams in the Appendix. 

3. Tactical Command Control and Communications 

The purpose of tactical command control and communications (TC3) is 

communications and information exchange with unit and other “friendly” elements. 

Actual mission command is performed by the mission agent. The TC3 performer object 

manages the conversion of information between the mission agent’s world state model 

and the unit’s standard messages. Some physical assumptions were made relative to the 

external information exchange. Namely, that voice interchange will be prominent, that it 

can be augmented with data, and that current interoperability data messages like the use 
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of radio procedure Prowords and tactical reports (e.g., spot, position), would follow the 

same formats as today. Separate voice and data channels were assumed and required 

response would have the same form as the input (e.g., if a voice command came in, there 

would be an acknowledgment in voice). This meant that the message state space would 

include whether it was voice or data in addition to its information content. 

The radio or tactical communications logic had to be understood in terms of what 

is endemic to the identity of a radio and what is needed relative to human or intelligent 

behavior. The latter then had to be adapted to the general ALO, sensor and control pattern 

already described. This is best understood in the context of TC3 intelligent control agent 

(TC3ICA) and detection agents IBD as shown in Figure 84. For ease of modeling, a 

single transceiver was assumed, though logical this could be separated into separate 

channels and separate transmitter and receiver. Voice and data adapters provide data 

to a tactical network adapter. Adapters, like the transceivers, operate in both directions. 

TC3 “control objects” and TC3 “sensor objects” interface with the network adapter as 

opposed to the context like other performer objects. These objects sense and control 

content between the detection agents and intelligent control agent. For example, the 

tactical report sensor will recognize the message type as tactical coming from the 

network adapter, and provide it to the tactical report detection agent that can determine its 

content. 
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Figure 84.  TC3 Intelligent Control and Detection Agent IBD 

The data sensors and controllers, though somewhat artificial, can correlate to real 

logic that needs to exist to bridge between intelligence and data presentation. This logic 

would likely be combined as part of the network interface design and the terms would not 

likely be used. It does enable the general patterns as defined here to be used and the same 

set of diagrams can be generated. The TC3 task agent receives and generates the data in 

the same way as the other tasks agents. The TC3 performer object logical concept design 

is included in the Appendix. 

4. Intelligence Reconnaissance Surveillance and Target Acquisition 

The purpose of the intelligence reconnaissance surveillance and target acquisition 

(IRSTA) performer object is to detect threats in the context and to determine the 

geolocation of the system. The PLS as defined here does not have lethality, so it does not 

attempt to engage threats. It reports the presence of the threat and their geolocation 

trough TC3 so lethal units or systems (e.g., convoy supporting gun trucks), can take 

action. The desired trajectory of threat awareness is a maintain goal as shown in Figure 

85. The state measure is defined as current versus actual to distinguish from an achieve 
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goal. The current state of threat awareness is the actual state of each threat that it can 

detect. In this case Armed Individual, Armed Vehicles, Improvised Explosive Devices 

(IEDs) or more precisely, their means of camouflage, concealment and deception (CCD), 

and “shots.” Shots refer to the ability to detect a projectile that was fired and find its 

origin of fire. Its sensor would typically be physical realized as an acoustic sensor. 

 

Figure 85.  IRSTA Threat Awareness Goal 

Each of these threat types has an associated detection agent and sensor per the 

agent pattern as indicated in the agent and sensor IBD shown in Figure 86. Also shown in 

the geolocation DA and sensor. Each detection agent uses the geolocation and range data 

from its sensor to calculate the threats geolocation. This location does not have to be 

precise as it is replacing a human operator’s ability to estimate location. It also does not 

presume a physical solution such as the global position system. Note also that IRSTA is 

strictly a passive activity, it itself is not directly causing an effect or context state change. 

There is on intelligent control agent or controllers except what is needed for sensor 

control. Each of the detection agents are modeled to detect features about each of the 

threat types as shown in the desired trajectories within the Appendix. They again are not 



 175 

fully classifying the threats, just characterizing them enough to support reporting and 

subsequent action. 

 

Figure 86.  IRSTA Agent and Sensor Interactions 

5. Mobility 

The mobility diagrams have a different look and feel and some minor differences 

in information capture as explained in the Appendix. The mobility performer object is 

shown in Figure 87. The mobility task agent (MTA) has the conduct maneuver task as 

identified in the PLS mission. Its primary purpose is maintain following distance or time 

from its lead vehicle and is identified as a maintain goal. It is supported by several lower 

level desired trajectories: “Move To,” Detect Obstacle, Detect Lead Vehicle, Detect Road 

Network, and Pass Route Point, as shown in Figure 88. In other words it has to locate the 

vehicle in front, move to a commanded position, avoid obstacles, follow the road and 

indicate when it has passed a route point (e.g., checkpoint). The full complement of 

mobility diagrams can be found in the Appendix. 
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Figure 87.  Mobility Performer Object 

 

Figure 88.  Conduct Convoy Maneuver Desired Trajectory  



 177 

6. System Command Control and Autonomics 

The top level desired trajectories of system command control and autonomics 

(SC2A) are: Mission Load Set, Mission Log, Play Mission Log and Provide System 

Computation and Signal Distribution. It must be able to detect that a mission is 

forthcoming. In the absence of a human operator, this requires that the system have some 

sort of permanent on state, at least on that can detect the initial command. From there it 

must be able to provide power to the system’s computation and signal distribution for the 

required ALOs to operate. Ideally this would occur without the prime power of the 

system being engaged, particularly a combustion engine. A variety of mission data needs 

to be loaded (e.g., mission plan, map data, route plans, radio pre-sets). Each type of data 

must be routed to the appropriate ALO or ALO set. Once accomplished, the ALOs can 

behave and interact as previously described. During mission execution, the SC2A 

performer object captures and stores a mission data log. After the mission, the SC2A can 

play back or provide the data log for download. This is the equivalent of the PLS crew 

participating in an after action review. 

The mission data log is captured by SC2A and its “sensor and “control” 

components. As with TC3, these are data sensors and data controllers rather than objects 

that interact with the context and would likely be part of some embedded computation or 

network logic. The SC2A sensor and controller objects detect events in the computation 

and signal logic of other performer objects and then captures and stores the event state. In 

this approach, all computation and signal objects are system resources. These resources 

can be viewed as being deployed in support of ALOs. A deployment like this would have 

to take place at design given the current state of practice. However, as practice evolves, 

this deployment could take place at run time (e.g., cloud computing), or even 

dynamically to adapt to varying resource conditions. Each ALO in each performer object 

has computation and signal objects deployed to it to support its execution. For example, 

the event sensor as shown in Figure 89 connects to the computation and signal logic 

of each performer ALO. It senses when an event occurs and passes the data to the 

Event Detection Agent, which then identifies the event and the relevant state for the 

SC2A task agent. 
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Figure 89.  SC2A Performer Objects 

As discussed previously, the focus of this research was on the horizontal 

interactions as isolated from vertical interactions or data transformation. However, to 

fully understand the SC2A performer objects, an illustration of the vertical logic for 

material handling (MH). As shown in Figure 90, each MH ALO has a computer object 

which represents a physical computing instance as, as opposed to a computer, that 

supports the ALO with the all the data transformations of a vertical stack. Once 

transformed, the data is communicated as signals between computer objects. The signal 

objects can be modeled as network or bus connections, as shown in Figure 91 for the 

detection agent computing, or as singular signal objects between each computer. As the 

computer and signal objects are aggregated into an actual computational and signal 

architecture, the execution time and throughput of the data transformation and 

distribution will constrain the performance of the horizontal interactions. 
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Figure 90.  MH ALO and Computational Stack Vertical Interaction 

 

Figure 91.  MH Computation and Signal Interaction 
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In summary, what was initially conceptualized as the mission agent state space of 

Figure 57, can now be considered to be a system architecture concept data model as 

shown in Figure 92. The system and its context have been elaborated in conjunction with 

the performer object elaboration and can be viewed as a set of structural entities and 

attributes. Performer objects can be extracted from the top level model along with any 

relevant context. As shown in Figure 93, the system has a material handling performer 

object which has a MHICA which has an assigned world state model that has several 

desired trajectories. One of those trajectories, Load Midpoint, has a goal with state and 

time attributes. Note that this is only part of the MHICA attribute set of state space. 

Similarly, as shown in Figure 94, the Cargo DA can be extracted from the top level set of 

performer objects and its state space identified. The context must also be elaborated to 

fully understand its state space. A mobile, goal directed, and context aware system 

requires both system and context definition to fully understand the systems data and 

signal attributes. 

 

Figure 92.  PLS System Architecture Concept Data Model 
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Figure 93.  MHICA Concept Data Example 

 

Figure 94.  Cargo DA Concept Data Example 
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C. PLS MODEL QUALITATIVE ANALYSIS 

The case study model was generated using the MCPS Concept DM2 and the 

supporting foundational concepts. In general, the five research questions posed have an 

affirmative response. Detailed responses are as follows: 

Technological independence. The system’s logical structure was modeled without 

specifying a technology solution with some minor exceptions. A ground vehicle has 

an identity relationship relative to certain physical abstractions (i.e., a ground vehicle has 

some means of propulsion). However, this is different than saying that the propulsion 

subsystem will be a diesel or combustion engine or electric drive. A PLS by identity 

has a loading mechanism. This perhaps can be something distinct from a crane with a 

boom, a stabilization system, etc. However, if some alternative exists, it could be 

equivalently expressed and linked into the upper levels of the material handling model. 

That alternative mechanism should have some means of being controlled and would 

integrate with the material handling intelligent control agent in the same way as the 

crane’s control systems.  

The “sensors” were framed to be realized by a device. They interact with the 

context and produce signal data to support an area of coverage, presence, range and 

bearing, identification, and tracking. However, a direct analogy can be drawn relative to 

“human sensors” that perform those same functions. When considering the state of 

technology relative to human capability, there are likely differences in precision and 

overall intelligent performance of the sensor in conjunction with the detection agent and 

task agent, but the combined allocation can be compared and assessed within a trade 

space. All the sensor and agent logical objects considered together can be allocated to 

machine, human or some combination thereof. When allocated to the combination, the 

ALO and sensor objects would aid in the derivation of the human to machine interface. 

The ALO machine realization can be either application software or the computational 

equivalent (e.g., a neural network).   

The most significant constraint on technology independence occurs relative to a 

capability achieved by the system interoperating with some external component or 
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system, in particular the Global Positioning System (GPS), RF communications and 

mission data export and import. Though geolocation was abstracted as a desired 

trajectory, the supporting performer object correlates to a GPS abstraction except for 

teasing out the human and system interface. The system by itself cannot reasonably 

replace GPS with another technology. Similarly, some means of communicating between 

the system and the rest of the force is presumed to be very similar to the current military 

radio approach, with the added presumption of both a voice and data channel. Finally, it 

is also presumed that a smart system would benefit by the digital realization and transfer 

of major sources of data. This data includes mission plans and orders, communication 

presets, maps and mission logs. It would be required for an autonomous ground system 

and currently is often utilized relative to military aircraft. 

Equivalent consideration to multiple forms of behavior. The major forms of 

behavior are: simple functional, state-based discrete event, continuous, and intelligent. A 

MCPS has a hierarchy of computational control with a CPS layer at its base. This layer is 

where discrete control interacts with continuous physical processes. The Intelligent Agent 

and Detection Agents form an intelligent behavior layer on the base CPS layer. They in 

turn are controlled by a higher intelligent layer of mission and task agents. Simple 

functional behavior is accommodated within the CPS layer and within specific ALOs as 

needed to support intelligent behavior. State-based discrete event behavior consists of 

information transformation within SC2A performer objects and to a lesser extent, TC3 

performer objects. 

Except for simple functional behavior which can be distributed throughout, the 

MCPS performer objects can be associated with a single form of behavior and associated 

computation. Specific objects within SC2A and TC3 transform information, ALOs 

accommodate intelligent behavior, and the CPS control objects accommodate direct 

discrete control of continuous behavior. These objects are similarly visible within the 

system concept model and can be linked to a specific computation units as machine 

instances or human roles. These instances and roles can be aggregated into physical 

solutions and the impact and contribution to mission and task performance tracked. All 
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forms of behavior are thus accommodated and can be specifically addressed relative to 

trade space assessment. 

Integration of operational and system behavior. Operational task decomposition 

takes place in the context of a mission assignment with detail desired trajectories linked 

to a state space and goals. Specified goals link operational MOEs/MOPs of the behavior 

and are embedded in the model. This can be compared to use case analysis, which may 

look at similar behavior and goals, but are used to generate system functions, leaving the 

use case itself anecdotal versus part of the concept design. The embedded mission 

assignment is linked to METT TC variables via the associated state space that includes 

the necessary context objects and attributes. 

Rather than directly mapping to system functions, desired trajectories are mapped 

to system performer objects or ALOs. More detailed mission or task decomposition takes 

place in the context of these ALOs and their decomposition. Further system logic 

decomposition is the result of the both logical structural decomposition as well as the 

details of the object behavior. The eventual decomposition reaches sensor and controllers 

which could be identified as system behavior. In addition, the interacting ALOs or the 

horizontal logic is distinct from the vertical logic, the latter can also be defined as system 

functions, to include computation and information processing. At this stage of 

conceptualization however, the logic as modeled can be considered to be all system 

behavior. If system performer objects are realized by human operators as physical 

solutions, a distinction of operational behavior may be useful for training purposes. With 

intelligent systems, distinct lines between operation and system behavior are less 

meaningful. 

Whether considered operational and system behavior, the horizontal interaction of 

system performer objects using commands and percepts as illustrated on SysML IBDs is 

the most dynamic description of the behavior. Since the signal interactions represent 

horizontal interaction, this IBD conveys different information than a more standard 

SysML IBD, which typically represents physical signal interactions between physical 

components. This use conveys similar information to a sequence diagram with the 

following distinctions: 
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(1) Though data exchange is not shown directly, it can be found by linking 
the interaction to the appropriate world state model. The data exchanged 
in many instances will have complex structure (e.g., cargo content), and 
not easily conveyed on a sequence diagram. 

(2) Many variations are possible in the flow of commands and percepts 
through the system along with variations of the data that they include. A 
given command may include an entire mission assignment or one 
tactical object for update. Not clear how many sequence diagrams would 
be needed to convey this variation. 

(3) ALOs are not typical OOAD software objects. They do not invoke a 
method and await a response, rather they interact with commands and 
percepts as independent actors that can operate concurrently. The 
behavior does not necessarily require a sequential thread. 

Activity diagrams, FFBDs, and business process modeling are all ways to 

represent workflow. The workflow in this approach is received as an overall mission 

assignment where it is decomposed and allocated to various ALOs. Each ALO manages 

its mission state relative to that plan or assignment. The desired workflow is embedded 

segmented and embedded into the ALO models as part of their respective world state of 

interest. 

Direct translation to component solutions. The system model is structured by 

interacting performer objects. For the most part, each of the performer objects can 

directly link one-to-one to a physical solution. These physical solutions could include a 

specific physical mechanical component, a controller board, a sensor, or software code. 

Some performer objects may also link to as an instance of a physical solution that can be 

aggregated into a physical solution. These include SC2A computation objects, ALOs and 

sensors. An ALO for example can be realized as software code, a neural net when 

combined with a computation instance, or by a physical instance of a human performing 

the ALO role. ALO and sensor physical realization need to be considered together. A 

given ALO realization as a human instance may also require an associated sensor to be 

realized by a human sensor of that same instance. World state models within the ALO 

can also be realized whole or in part by a physical data store, though the direct link may 

not be as obvious. 
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Component Assembly Independence. One of the advantages of software OOAD is 

that objects and their interactive behavior can be defined and analyzed to more granular 

levels of resolution and then assembled or aggregated into programs or software 

configuration items. The same principle applies to the system logic using this approach 

except the logic can be realized as software code, hardware, or human instances. 

Once selected, the objects can be aggregated up to higher level assemblies or 

configuration items. These assemblies together with the component selections impact 

how well the system achieves MOEs/MOPs as well as impact other system concerns, 

such as cost and mass properties. Alternative assemblies can be considered in conjunction 

with alternative physical component selections and the impacts addressed within a trade 

space assessment. 

Design Science Method Verification and Validation Consideration The MCPS 

DM2 and associated foundational concepts applied to a MIGVS concept design is a 

design science method, specifically, a design science method for concept design of cyber-

physical systems. The Validation Square (Seepersad et al. 2005) is proffered as a way to 

verify and validate research of a design method. As Seepersad et al. assert for a design 

method, “research validation is a process of building confidence in its usefulness with 

respect to a purpose.” Table 5 shows the Validation Square, which is divided into four 

quadrants with a related set of criteria. Each quadrant is used roughly in order to build 

successive confidence or validation of the research method’s purpose and usefulness. The 

numbered criteria in each quadrant corresponds to the same number in the dissertation 

research evidence column. As Seepersad et al. explain, the criteria of Quadrant 1) 

validates that the proposed design method is logically consistent. Quadrant 2) criteria 

validates that the example problems are appropriate to both illustrate and verify the 

design method. Quadrant 3) criteria is used to assess whether the design method produces 

useful outcomes. Finally, Quadrant 4) criteria is used to determine that the design method 

is useful beyond the specific case study and detailed example problems. The dissertation 

design method is validated based on the total set of criteria matched with the appropriate 

dissertation research evidence in Table 5. 
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Table 5.   Validation Square Criteria with Dissertation Research Evidence 

Validation Square Criteria Dissertation Research Evidence 
1) Theoretical 
(Domain-Independent) 
Structural Validation 
1. Define design science 
requirements 
2. Literature review to show 
advantages compared with other 
methods. 
3. Characteristics for the domain are 
enumerated 
4. Establish internal consistency 

1. The requirements are captured in the problem statement and 
research questions and include: modeling multiple forms of 
behavior, technology independence, integrating operational and 
system behavior, and supporting component instantiation. 
2. The literature review and research value indicate there is no 
current method that simultaneous achieves all the requirements 
identified for the MCPS class of system and problem, particularly 
the intelligence and human independent aspects of the problem. 
3. Characteristics for the domain are enumerated within the 
foundational concepts (e.g., goal based state behavior, state change 
through interactions). 
4. Both the concepts and the case study data utilize the same 
modeling language (i.e., SysML). Both structure and behavior 
considerations are captured in the DM2. The DM2 is consistent 
with the foundation concepts which in turn are consistent with the 
structure and behavior of the case study model. The structure and 
behavior of the case study model are internally consistent within 
and between each ALO as captured by the five integrated model 
diagrams.  

2) Empirical 
(Domain-Specific) 
Structural Validation 
1. Characteristics of example 
problems are similar to actual 
problems 
2. Example problems cover all the 
needed characteristics 
3. Examples produce data that can 
be used to compare with other 
methods 

1. The performer object model encompasses a wide range of 
common MIGVS logic: material handling or special mission, 
mobility, IRSTA, TC3 and SC2A which includes mission command 
and control. Each performer object internally models intelligent 
behavior connected to a base CPS layer. The DM2 and the five 
diagram types capture needed characteristics: performer and context 
logical hierarchy and state, goal state mission assignments, 
interactions with other performer objects, internal ALO 
composition of behavior and world state models, and the ALO 
internal behavior that acts on world state and interacts with 
commands and percepts. 
2. Each performer object covers a unique form of logic required by 
a MIGVS. Each performer object internally models multiple forms 
of behavior and is required: internally exhibits multiple forms of 
behavior. Integrated together the performer objects model all the 
forms of behavior and simultaneously achieve the requirements of 
the research questions.  
3. The five types of diagrams produce data that can be compared to 
other methods when generalized. This includes missions, tasks, 
MOEs/MOPs, operator roles, physical mechanical and control 
based-functions, information management, and goal-based 
intelligence. 

3) Empirical 
(Domain-Specific) 
Performance Validation 
1. Do example outcomes meet 
requirements and characteristics 
2. Does data support outcome 
conclusions 

1. The five diagram types each capture key required characteristics 
as demonstrated. The five diagram types integrate with each other 
and other ALOs or sensor/controller objects to meet the 
requirements of the logical concept design overall. 
2. Five performer objects with 34 ALOs that each model a part of 
the required intelligent behavior, provide depth and breadth of 
modeling sufficient to inform concept design and meet the stated 
research requirements. The logic defined in a component 
framework can support a trade space exploration that can include a 
trade relative to the number human operators. 
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Validation Square Criteria Dissertation Research Evidence 
4) Theoretical 
(Domain-Independent) 
Performance Validation 
1. Domains with the precise 
characteristics 
2. Examples of more general class 
3. What characteristics are 
applicable 

1. Any MIGVS has nearly the exact same characteristics as the 
PLS. The only exception would be lethality which has similar 
characteristics and could be modeled in a similar pattern as material 
handling and mobility. 
2. A more general class is MCPS or any CPS that has hierarchical 
control logic with a large number of states, including goal states. 
3. The characteristics applicable for another domain for relevant use 
are: hierarchical control logic with a base CPS layer, a dynamic or 
otherwise state intensive system and external environment, and 
intelligence that is goal directed and context aware. 
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V. CONCLUSIONS AND RECOMMENDATIONS 

This dissertation contributes a modeling framework capable of modeling the 

complete behavior logic of cyber-physical systems as a set of interacting and abstract 

component-based performer objects: agents, controllers and sensors. An advantage of the 

modeling framework is all types of system objects are modeled using the same modeling 

language constructs. As a result, behaviors that would be allocated to physical hardware, 

software and/or human elements are all modeled, analyzed, and treated the same. The 

modeling framework’s agent and component abstractions are technology and 

implementation independent yet meaningful enough to capture key performance 

attributes, attribute dependencies, and the key behavior logic required of the system. This 

dissertation demonstrates how the modeling framework performs the initial MIGVS 

concept design of system behavior. The framework’s interacting components can be 

instantiated as hardware, software and/or human roles and the impact on that behavior 

assessed as part of a trade space exploration during the concept design phase. Current 

modeling methods are unable to treat hardware, software, and human elements on an 

equal footing using a single or integrated modeling approach. 

When the initial behavior or logical concept design is integrated with a 3D CAD 

concept design of the physical architecture and it’s mass properties, a trade space 

exploration is enabled that increases the number and type of components and related 

capabilities that can be considered and therefore increases the number of possible 

combinatorial system solutions. The cyber components (e.g., electronics, sensors, 

software), and their contribution to operational effectiveness and system capability, will 

have a visibility on par with the traditional physical-mechanical components and their 

behaviors. Furthermore, the interdependencies between cyber and physical-mechanical 

components can be established. The cyber components can be assembled and integrated 

into a CAD physical architecture at an equivalent level of abstraction. The final concept 

design can reflect both hardware and software configuration items as well as any crew 

configuration. Logical design portion of this final concept design may be used just for 
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analysis or it can become part of the system architecture or technical baseline and 

retained through the life cycle. 

The MCPS concept data meta-model (DM2) and associated concepts provide the 

necessary perspective and framework to initially conceptualize a MIGVS. The 

intelligence logic of a MIGVS is composed of a hierarchy of agent logical objects 

(ALOs) operating on a base cyber-physical layer. These ALOs are state intensive; that is, 

they have a state space with many variables that change as ALOs interact with each other 

and with context objects. At a certain level of abstraction, this intelligent logical 

hierarchy is independent of how it is physically implemented and assembled, to include 

human or technology realization. The interacting ALOs model the system intelligent 

behavior at that level of abstraction yet reflect component granularity below physical 

assembly. As ALOs are realized by particular physical implementations and aggregated 

into particular assemblies, the performance attributes of the ALOs and their dynamic 

interactions become physically constrained. Each physical implementation and assembly 

approach considered will change the performance. Performance changes can at least be 

descriptively assessed relative to physical component and assembly selections within a 

trade space exploration. 

An ALO’s behavior is not determined by its previous state and a current input 

(i.e., it is not simply a state intensive version of a finite state machine). ALO behavior is 

determined by the relation of the current state as passed to it from a subordinate agent and 

its goal state as commanded by a superior agent. The goal state requires specification for 

ALO potential realization by machine versus human and to facilitate trade space 

evaluation (i.e., how well does the machine perform relative to the human?). The 

collective ALO goal state specifications equate to the system’s operational measures of 

effectiveness or performance. An effective specification of a goal requires state and time 

target measures as well as tolerances for both. It also requires a way to measure loss of 

value from the target. The goal specification coupled with the component granularity of 

the ALOs results in a more precise and comprehensive definition of operation behavior 

while preserving solution independence. 
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The system concept is not fully defined without including data concepts that 

reflect goal state and state variables. State as reflected in data, information, or knowledge 

can be categorized into three types (Evans et al. 2002): parametric as used by simple or 

mathematical functions including control systems, complex structures as used in dynamic 

context sensing and information processing, and symbolic as used for high level 

reasoning. As Evans et al. explain, these complex data structures include spatial 

geometry, maps, images, and can also include arrays and lists. The data concepts when 

realized by machine must be accompanied by the necessary sensor concepts to acquire 

the data. The collective intelligence of a MIGVS requires all three data types to 

sufficiently understand its goals and dynamic world state and distinguishes it from typical 

artificial intelligence approaches using only symbolic knowledge or data. The MIGVS 

concept must include and integrate data concepts along with the physical-mechanical 

concepts and cyber component concepts. 

The ALO hierarchy is a cyber or computational control hierarchy that should 

enable a reusable structure of application logic or software. Any MIGVS can be arranged 

the same pattern as used in the case study. A mission agent is at the top level of the 

hierarchy and controls task agents at the next level. Each task agent interacts with an 

intelligent and detection agent layer, and they in turn control sensors and controllers. 

MIGVS as a domain has similar logic across systems. For example, a PLS participating 

in a convoy mission is nearly identical to a combat system participating in a tactical road 

march. Maintaining local situational awareness is a common solider task within different 

systems that can be realized by an IRSTA ALO. The application logical hierarchy does 

not change no matter its physical realization. For example, the intelligence could be 

realized: by a single computational assembly with fan out connections to the sensors and 

controls, by a distributed one for one match of ALO and computational assembly, by a 

one for one match of ALO with “human assembly” resulting in dozens of crew members, 

or by a myriad of crew member and computation assembly combinations. To the extent 

that ALOs are realized in software, the hierarchical application logic can stay the same 

whether it is realized in a single program on a single computer or distributed across 
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many. The performance can certainly be impacted as the interaction between ALOs take 

different paths thought the vertical logic. 

From a MIGVS domain standpoint, the application logic reusability should also 

pay off in terms of generating system models with associated operational architectures 

and hardware components. Standard performer and context objects structures can add 

value in terms of generating system models where the operational behavior logic is 

common. Where the operational performance is nearly common, then reuse of physical 

implementations whether software, hardware or human, should also be a distinct 

possibility. Reusable application logic together with components that conform to that 

logic would enable portfolio management using rapid generation of well-specified and 

high fidelity operational architectures supported by system OOAD to define feasible 

systems. Advancements in capability can be specified in operational terms and system 

feasibility assessed relative to existing and/or new technology. 

1. Limitations 

The logical modeling framework is limited by model complexity, unfamiliar 

description, and lack of a supporting analytical framework. The relative higher fidelity of 

the logical model as compared to more typical systems engineering modeling approaches 

results in complexity that will require more time to generate. The model also has many 

crosscutting relationships that must be synchronized and cannot be practically generated 

without modeling language support. The native presentation is not as familiar or intuitive 

as other methods such as business process modeling or functional flow modeling and 

may require presentation translation, particularly for non-technical stakeholders. As a 

new modeling method it does not have a ready-made analytical support tool or 

framework. Not clear how discrete event simulation would be used since a given event 

only results in a behavior when the current state change is significant relative to a goal 

state. Agent based simulation would seem an obvious support tool, but these agents are 

higher fidelity and act on complex data structures similar to an actual system. The logic 

required to make a given ALO executable would approach that of a software prototype. 
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The patterned nature and solution independent reusability of the approach may mitigate 

some of these limitations. 

The logical model development approach is limited by the lack of needed source 

material and reliance on existing doctrine and tactics. The approach leverages the use of 

design reference mission and “design reference system.”  Necessary source information 

may be spread out over many training procedures and other doctrine, often not quantified 

sufficiently, and difficult to determine whether critical information might have been 

missed. Current methods for specifying operational requirements and architectures do not 

provide the necessary information for this method. Establishing an authoritative source of 

the necessary requirements will take additional time. Finally, many of the advantages of 

this method may be neutralized for new systems using significantly new doctrine and 

tactics, particularly where the capability exceeds that of previous human operators, for 

example some sort of precision maneuver. In this case, perhaps a comparative point of 

departure could be used relative to the design references. Also, assuming new tactics are 

not invented for each new system, this method would still apply to future upgrades and 

similar systems. 

2. Future Work 

Three significant areas of future work are recommended. The first is centered 

around the System 4+1 model shown in Figure 53 and consists of taking the initial 

concept design as defined here or similarly, and define a final concept design and initiate 

a development. The concept design would require concurrent development, iteration, and 

the appropriate integration relationships between the following: 

(1) Logical Model—physical component selection of the performer objects 
to include human roles or instances. This selection would include which 
ALOs would be realized as software. Test the handoff the object models 
for usefulness and problem understanding for software developers. 
Retain the final logical model as a decomposition bill of material 
(DBOM). Define user interface solutions as needed. Update the domain 
performer model as required.  
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(2) Physical Model—harmonize DBOM component selections with concept 
CAD EBOM selections. Adjust DBOM solutions as required to meet 
integration and mass property constraints. 

(3) Execution Model—assess ALO defined software the computational 
architecture selection. Assess performance and concurrency impacts. 

(4) Deployment Model—complete final concept deployment of the physical 
architecture. Include software deployed to distribution computation 
components and embedded networks. 

The second recommended future research is to fully elaborate all types of vertical 

logic. This effort succeeded in identifying SC2A tasks and trajectories and isolating the 

vertical from the horizontal logic. Only an example was shown as to how ALOs connect 

to computation and signal objects. All ALOs can be similarly connected to computational 

and signal objects and the computational objects decomposed into its constituent “stack” 

objects. The computational “stack” objects may be different for different types of ALOs, 

particularly for detection agents that need to process complex data, such image 

processing for recognition. Full elaboration of the computational logic would have to be 

done within the framework of an execution model. The execution model may be a fully 

integrated vertical and horizontal logic model with physical component selection and 

attribution. A full examination of the vertical logic would require system level interrupt 

handling to handle exceptions. Exceptions are likely to be the stressing case on sensor 

and computational performance. Also, a full system model requires power distribution 

and structural support. Both of these are a type of vertical logic that can impact horizontal 

logical performance. A structural component for example must reliably execute its 

purpose. If not, there is likely an impact to the performer object(s) that requires that 

support to fulfill its purpose. 

The third recommended future research is to take advantage of the performer 

object structure and define time dependent mission reliability for the system. ALOs will 

have a reliability that is only as good as the information it is utilizing. Information 

reliability can be defined to be one minus the information uncertainty. This information 

has both a source and a time dependency. The source dependency can be a matter of trust, 

as provided from an external source, or a matter of performance as in a detection agent 
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and sensor pair with Type I and II errors. It would be desirable to be able to tune these 

errors dependent on mission rules and conditions. Information, no matter the source, will 

degrade with time. A direct corollary can be drawn to hardware objects. Hardware will 

have source as delivered from the factory reliability, and a time dependent aspect that 

degrades with use and storage. Together these measures could be used to define a mission 

reliability or expected value that could vary in real time as the mission executes.  
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APPENDIX.  PLS SYSML MODEL DIAGRAMS 

These diagrams augment the diagrams shown previously. The MA diagrams were 

covered comprehensively previously so what follows is for the five performer logic. 

Infinite number of views are possible, so the views follow the same pattern as presented 

for the mission agent and material handling. They serve the same purpose as previously 

explained and are shown here for model completeness. 

B. MATERIAL HANDLING 

Material Handling (MH) was extensively discussed previously to illustrate the 

overall model and approach. 

1. MH Assigned Mission 

In addition to the tasks and trajectories previously discussed, MH has the 

following trajectory elaboration. 

 

Figure 95.  MH Identify Cargo Desired Trajectory 
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Figure 96.  MH Proximity Awareness Desired Trajectory 

 

Figure 97.  MH Cargo Ready Desired Trajectory 
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Figure 98.  MH Supply Awareness Desired Trajectory 

 

Figure 99.  MH Deliver Supply Desired Trajectory 
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2. MH Logical Object Hierarchy 

No additional material handling objects then already presented. 

3. MH Interactions 

There are no more addition MH IBDs then already presented. 

4. MH Agent Internal Composition 

The cargo detection agent was previously presented. The following are the other 

three detection agents for material handling. 

 

Figure 100.  MH Ground Detection Agent 
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Figure 101.  MH Overhead Detection Agent 

 

Figure 102.  MH Pedestrian Detection Agent 
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5. MH Detection Agent Behavior 

In addition to the Cargo Detection Agent behavior, MH has the following 

detection agent behavior: 

 

Figure 103.  MH Ground Detection Agent Behavior 

 

Figure 104.  MH Overhead Detection Agent Behavior 

 

Figure 105.  MH Pedestrian Detection Agent 
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C. TACTICAL COMMAND CONTROL AND COMMUNICATIONS 

Tactical Command Control and Communications (TC3) was only briefly 

discussed previously. The full complement of diagrams is presented following. 

1. TC3 Assigned Mission 

 

Figure 106.  TC3 Command Synchronization Task 

 

Figure 107.  TC3 Identify Message Content Desired Trajectory 
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Figure 108.  TC3 Generate Message Out Trajectory 

2. TC3 Logical Object Hierarchy 

None of the TC3 performer objects directly senses or effects the context. Its state 

is determined from interpretation of the data over the network and comparison to stored 

knowledge or preset knowledge (e.g., call signs). As such, there is not context logical 

object hierarchy. 

 

Figure 109.  TC3 Performer Logical Object 
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3. TC3 Interactions 

 

Figure 110.  TC3TA and TC3ICA/Detection Agent Interactions 

 

Figure 111.  TC3ICA and TC3 Detection Agent with Control and Sensing Interactions  
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4. TC3 Agent Internal Composition 

 

Figure 112.  TC3 Task Agent Internal Composition 

 

Figure 113.  TC3 Command Synchronization DA Internal Composition 
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Figure 114.  TC3 Fragmentary Order DA Internal Composition 

 

Figure 115.  TC3 Pro Word DA Internal Composition 
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Figure 116.  TC3 Tactical Report DA Internal Composition 

 

Figure 117.  TC3ICA Internal Composition 
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5. TC3 Agent Behavior 

 

Figure 118.  TC3 Task Agent Behavior 

 

Figure 119.  TC3 Intelligent Control Agent Behavior 
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Figure 120.  TC3 Command Synchronization DA Behavior 

 

Figure 121.  TC3 Fragmentary Order DA Behavior 

 

Figure 122.  TC3 Pro Word DA Behavior 
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Figure 123.  TC3 Tactical Report DA Behavior 

D. INTELLIGENCE RECONNAISSANCE SURVEILLANCE AND TARGET 
ACQUISITION 

Intelligence Reconnaissance Surveillance and Target Acquisition (ISRSTA) was 

only briefly discussed previously. The full complement of diagrams is presented 

following. 

1. IRSTA Assigned Mission 

 

Figure 124.  IRSTA Tactical Awareness Task 
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Figure 125.  IRSTA Detect Geo Location Desired Trajectory 

 

Figure 126.  IRSTA Detect Armored Vehicle (and its geolocation) Desired Trajectory 
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Figure 127.  IRSTA Detect Armed Individual Desired Trajectory 

 

Figure 128.  IRSTA Detect “IED” Desired Trajectory 
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Figure 129.  IRSTA Detect Shot Desired Trajectory 

 

Figure 130.  IRSTA Threat Awareness Desired Trajectory 
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2. IRSTA Logical Object Hierarchy 

 

Figure 131.  IRSTA Performer Logical Objects 

 

Figure 132.  IRSTA Context Logical Objects 
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3. IRSTA Interactions 

 

Figure 133.  IRSTA Agent and Sensor Interactions 

4. IRSTA Agent Internal Composition 

 

Figure 134.  IRSTA Task Agent Internal Composition 
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Figure 135.  IRSTA Armed Individual DA Internal Composition 

 

Figure 136.  IRSTA Armed Vehicle DA Internal Composition 
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Figure 137.  IRSTA IED DA Internal Composition 

 

Figure 138.  IRSTA Shot DA Internal Composition 
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Figure 139.  IRSTA Geolocation DA Internal Composition 

5. IRSTA Agent Behavior 

 

Figure 140.  IRSTA Task Agent Behavior 



 220 

 

Figure 141.  IRSTA Armed Individual DA Behavior 

 

Figure 142.  IRSTA Armed Vehicle DA Behavior 

 

Figure 143.  IRSTA IED DA Behavior 
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Figure 144.  IRSTA Shot DA Behavior 

 

Figure 145.  IRSTA Geolocation DA Behavior 

E. MOBILITY 

Mobility model and associated diagrams were generated by a different individual 

than the author as indicated in the Acknowledgment. They were generated to the concepts 

defined here, but the concepts were evolving and there was no SysML style guide that 

could be used. As such, there are some discrepancies of information captured and a 

different look and feel overall. Chief among these are: 

(1) The variable “sAct” is used in lieu of “sMOPAct” to house constraint 
values. It also can contain measure of time which are separate goal 
measures elsewhere. 

(2) Goals and trajectories are combined into a single block. 
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(3) A greater use of inheritance from patterns that drive a significantly 
different look to constraints and trajectories. The use of inheritance also 
requires more use of SysML “redefine” to alter or more definitely type 
properties that are inherited. 

However, all in all, they do track to the concepts pretty closely and conform to the five 

modeling diagram types. 

1. Mobility Assigned Mission 

 

Figure 146.  Mobility Conduct Maneuver Task 



 223 

 

Figure 147.  Mobility Convoy Maneuver Desired Trajectory 

 

Figure 148.  Mobility Follow Ground Guide Desired Trajectory 
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Figure 149.  Mobility Load Maneuver Desired Trajectory 
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Figure 150.  Mobility Unload Maneuver Desired Trajectory 

 

Figure 151.  Mobility Monitor Mobility Condition Desired Trajectory 
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Figure 152.  Mobility Pass Route Point Desired Trajectory 

 

Figure 153.  Mobility Support Material Handling Desired Trajectory 
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Figure 154.  Mobility Detect Cargo Content Location 

 

Figure 155.  Mobility Detect Cargo Load Location Desired Trajectory 
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Figure 156.  Mobility Detect Fuel Level Desired Trajectory 

 

Figure 157.  Mobility Detect Ground Guide Desired Trajectory 
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Figure 158.  Mobility Detect Lead Vehicle Desired Trajectory 

 

Figure 159.  Mobility Detect Motion Desired Trajectory 
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Figure 160.  Mobility Detect Obstacle Desired Trajectory 

 

Figure 161.  Mobility Detect Dismount Desired Trajectory 
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Figure 162.  Mobility Detect Military Obstacle Desired Trajectory 

 

Figure 163.  Mobility Detect Vehicle Desired Trajectory 
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Figure 164.  Mobility Detect Vegetation Desired Trajectory 

 

Figure 165.  Mobility Detect Prime Power Health Desired Trajectory 
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Figure 166.  Mobility Detect Road Network Desired Trajectory 

 

Figure 167.  Mobility Energize PTO Desired Trajectory 
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Figure 168.  Mobility “Move To” Desired Trajectory 
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2. Mobility Logical Object Hierarchy 

 

Figure 169.  Mobility Performer Logic Objects 
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Figure 170.  Mobility Context Logical Objects 

 

Figure 171.  Mobility Context Road Network Logical Objects 
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Figure 172.  Mobility Context Tactical Control Measures Logical Object 

3. Mobility Interactions 

 

Figure 173.  Mobility Agent Interactions 
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Figure 174.  Mobility DA and Sensor Interactions 

 

Figure 175.  Mobility ICA and Controller Interactions 
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4. Mobility Agent Internal Composition 

 

Figure 176.  Mobility Task Agent Internal Composition 
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Figure 177.  Mobility Cargo DA Internal Composition 

 

Figure 178.  Mobility Fuel Level DA Internal Composition 
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Figure 179.  Mobility Ground Guide DA Internal Composition 

 

Figure 180.  Mobility Lead Vehicle DA internal Composition 
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Figure 181.  Mobility Motion DA Internal Composition 

 

Figure 182.  Mobility Obstacle DA Internal Composition 



 243 

 

Figure 183.  Mobility Primer Power Health DA Internal Composition 

 

Figure 184.  Mobility Road Network DA Internal Composition 
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Figure 185.  Mobility ICA Internal Composition 
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5. Mobility Agent Behavior 

 

Figure 186.  Mobility Task Agent Behavior 

F. SYSTEM COMMAND CONTROL AND AUTONOMICS 

System Command Control and Autonomics (SC2A) 
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1. SC2A Assigned Mission 

 

Figure 187.  SC2A Provide Autonomics Task 

 

Figure 188.  SC2A Mission Load Set Desired Trajectory 
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Figure 189.  SC2A Detect Mission and Detect Mission Data Content Desired Trajectories 

 

Figure 190.  SC2A Computation & Signal Power Up and Data Load Desired Trajectories 
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Figure 191.  SC2A Mission Log Desired Trajectories 

 

Figure 192.  SC2A Play Mission Log Desired Trajectory 
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2. SC2A Logical Object Hierarchy 

 

Figure 193.  SC2A Performer Logical Objects 

 

Figure 194.  SC2A Context Logical Objects 
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3. SC2A Interactions 

 

Figure 195.  SC2A Agent and Mission Agent/Convoy Commander Interactions 

 

Figure 196.  SC2A Detection Agent and Sensor Interactions 
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Figure 197.  SC2A Intelligent Control and “Controller” Interactions 
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4. SC2A Agent Internal Composition 

 

Figure 198.  SC2A Task Agent Internal Composition 

 

Figure 199.  SC2A Mission DA Internal Composition 
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Figure 200.  SC2A Mission Data Content DA Internal Composition 

 

Figure 201.  SC2A Event DA Internal Composition 
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Figure 202.  SC2A Intelligent Control Agent Internal Composition 

5. SC2A Agent Behavior 

 

Figure 203.  SC2A Task Agent Behavior 
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Figure 204.  SC2A Mission DA Behavior 

 

Figure 205.  SC2A Mission Data Content DA Behavior 

 

Figure 206.  SC2A Event DA Behavior 
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Figure 207.  SC2A Intelligent Control Agent Behavior 
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